Heterogeneity in Price Rigidity: Evidence from a Case Study Using Microlevel Data

We combine two data sets to study price rigidity. The first consists of weekly time series of retail, wholesale, and spot prices for twelve products. These time series contain two exogenous cost shocks. We find that prices exhibit more rigidity in response to the second shock than the first. The second data set consists of all publicly available information about the shocks. Content analysis of these information reveals that the first shock is larger and more persistent, and the market has more information on it than the second. We conclude, therefore, that prices are more flexible in response to cost shocks that are larger, that are more persistent, and on which market participants have more information.

Variation in price rigidity is an issue of considerable interest in macroeconomics because understanding its reasons may shed light on
causes of price rigidity.\footnote{See, for example, Encaoua and Geroski (1984), Blinder et al. (1998), Geroski (1992), and Levy and Young (2001).} For example, according to Gordon (1981, p. 517), understanding it “is crucial for the theory of price adjustment.” Caplin (1993, p. 21) describes it as unfortunate “that so little attention has been given to characterizing the circumstances that give rise to high and low levels of nominal price inertia. Progress in this dimension calls for more detailed empirical work and for increased understanding of the manner in which corporations actually arrive at pricing decisions.” Weiss (1993, p. 15) also suggests to include all “relevant information at the level of the firm, including costs and demand data.” Similarly, Lach and Tsiddon (1992, p. 351) suggest to use actual transaction prices to study price rigidity because they “most closely resemble the data envisioned by the cost of adjustment theory: price quotations at the level of the price setter.” Unfortunately, only a handful of studies use actual transaction prices to study price rigidity (Kashyap 1995, Genesove 1999).

We combine two unique data sets to create a microlevel case study of time-varying price rigidity. The first data set consists of weekly retail, wholesale, and commodity prices for twelve orange juice products which are categorized as either refrigerated or frozen. A unique feature of this data set is that it contains two episodes of exogenous commodity cost shocks. The cost-price data suggest that manufacturers’ and retailer’s reactions to the shocks were different. Specifically, we find that prices exhibit significantly more rigidity in response to the second shock than the first.

To explain this variation in price rigidity we collected a second data set consisting of all public information on the cost shocks. Because it is difficult to know what information economic agents have and use, macroeconomists usually are forced to make assumptions of various kinds about the content of this information. For example, many empirical macroeconomic studies that make use of anticipated/unanticipated series rely on forecast-generating equations to generate these series. We, in contrast, study a very specific product market where determination of the relevant information set is less ambiguous in comparison to studies that use aggregate data. Thus, we collected all publicly available information we could find about the causes and effects of the cost shocks, and by analyzing the content of these information, we are able to assess the extent of the actual information the orange juice market participants likely had. We shall also note the novelty of the method we use to identify shock persistence. In macroeconomics, identification of temporary and permanent components of shocks is usually accomplished by econometric means. The reason for this practice is that it is difficult to know how market participants assess economic variables’ persistence. We are able to overcome this difficulty by focusing on specific cost shocks and by studying in detail their actual causes and effects and the events surrounding them, we are able to evaluate their likely permanence.

We find that (i) the first cost shock was larger than the second, (ii) the first shock was more persistent than the second, and (iii) the market had more information on the first shock than the second. These findings, therefore, suggest that prices are more flexible in response to cost shocks that are larger in size, more persistent, and
on which the market participants have more information. This conclusion is particularly valuable because the nature of the price rigidity we are documenting enables us to control for various market features that are frequently used to explain variation in price rigidity. For example, over the three-year sample period, the market structure and industry concentration, the nature of long term relationships, contractual arrangements, and the number of stages of processing, all have remained unchanged. Further, orange juice products have a constant quality. The variation in price rigidity we document in this paper, therefore, cannot be explained by variation in any one of these factors.

The paper is organized as follows. In section 1, we describe the data. In section 2, we analyse the retailer’s and manufacturers’ reactions to the two cost shocks. In section 3, we compare the cost shocks. In section 4, we conclude by discussing the findings in the context of existing price rigidity theories. In the appendix we list the information collected and their sources.

1. DATA

Cost-Price Data

The first data set consists of 168 weekly observations (September 7, 1989–November 19, 1992) of actual retail, wholesale, and commodity spot prices for twelve Florida orange juice products. We have data for three brands, Tropicana, Minute Maid, and the Store Brand (in-house supermarket brand). Each brand comes in two forms, frozen concentrated and reconstituted from frozen concentrate (refrigerated), and two sizes: the frozen concentrated orange juice comes in 12oz and 16oz cans while refrigerated juice comes in 64oz and 96oz (128oz for the Store Brand) containers. In the analysis that follows we focus on two representative products, one frozen concentrated orange juice (Store Brand, 12oz, displayed on Figure 1) and the other, refrigerated orange juice (Tropicana brand, 96oz, displayed on Figure 2). The remaining ten products exhibit similar behavior but are not discussed here to save space.

Figure 3 displays a general description of the frozen concentrated orange juice market, which provides about 70 percent of the orange juice sold in the United States. The chart indicates that this market consists of two channels: the retail channel, which represents the final goods market, and the manufacturer channel, which represents the intermediate goods market. Thus, the market we study is characterized by a hierarchical structure, similar to the “stages of processing” structure studied by Blanchard (1983).2

The data set has several unique features. First, it consists of actual retail and wholesale transaction prices and a measure of upstream commodity cost. The retail and

2. This is different from the input-output structure of Gordon (1990) and Basu (1995). As Gordon (1990) suggests, the input-output view of the market is better suited for more aggregated and complex products produced using many inputs. In contrast, here we study individual products, and also the products themselves are simple, produced with few inputs.
FIG. 1. Cost and Price Series of Frozen Concentrated Orange Juice, Store Brand, 12oz (dollars/oz)

FIG. 2. Cost and Price Series of Refrigerated Orange Juice, Tropicana, 96oz (dollars/oz)
Figure 3 provides a simplified description of the organizational structure of the Florida orange juice market. Orange juice growers sell the fruit to orange juice manufacturers/processors who convert the oranges into frozen concentrate. There are two types of processors: one group of processors are privately owned and produce orange juice for private label. The other group of processors are owned by national orange juice manufacturers such as Tropicana and Minute Maid, and they produce nationally branded products. The manufacturers/processors package and sell the concentrated juice to retailers, either in its frozen form or reconstituted from concentrate and packaged as refrigerated juice. Oranges are also sold for other uses such as for preparing freshly squeezed juice, for table use, for producing food additives, and so forth through other channels of distribution. These additional uses and their associated channels are not shown on the chart since in this paper we only study the market for frozen concentrated and refrigerated (reconstituted from frozen concentrated) orange juice. See Ward and Kilmer (1989) for details.
The retail prices reflect retailer's coupons and discounts, but not manufacturer coupons, which are rarely used in this market. The wholesale prices do not include lumpy payments like slotting allowances, which, according to the price manager of the chain, were not common in the orange juice category during the period covered in our study.

The use of nearest futures price as a proxy of the spot price means that once a month there may be a change from month n contract to month $n+1$ contract. We adjust the series for storage and carrying cost using a cash-and-carry formula. Deviations of the contract price from the spot price merely represent capital gains and losses to the buyer/seller. Thus, the spot price reflects the market and weather conditions fairly well and, therefore, is a reasonable proxy for manufacturers’ costs.

The cost-price data have additional advantages. First, we control for various market features. For example, over the three-year period, market structure and industry concentration, the nature of long term relationships, contractual arrangements, and the number of stages of processing, all have remained unchanged. Therefore, the price rigidity variation we find cannot be explained by any of them. Second, orange juice products have a constant quality, monitored by the Florida Department of Citrus and the United States Department of Agriculture, who set limits on the amount of sinking solids; the frozen concentrated orange juice must also pass a test that guar-
Two aggregate demand shocks could affect the orange juice market: (i) the Kuwait War of January 17, 1991–February 27, 1991, and (ii) the July 1990–March 1991 recession. We, however, found no evidence of such effects on the orange juice market.

Figure 2 displays the cost-price data for the Tropicana brand refrigerated orange juice, 96oz. Because of the difference in the Brix content of the frozen concentrated orange juice and refrigerated orange juice, we had to adjust the spot cost data downward to ensure the equality in the Brix-adjusted quality of the orange juice prices plotted on Figure 2.

The frequent promotional activity visible in the retail and wholesale prices are standard practice for retailers of these and similar products (Levy et al. 1998). Its main reason is the competitive nature of the retail food industry.

Information Data

The data in our sample contain two exogenous cost increases. Figure 1, which plots the cost-price series for Store Brand 12oz frozen concentrated orange juice, shows the spot cost jumping significantly during the second half of December 1989 (weeks 15–17). Another big jump occurs during the second half of October 1991 (weeks 110–112). It is the difference in the reaction of manufacturers and retailers to these two cost shocks that constitutes the price rigidity variation we document.

To evaluate the extent of these shocks’ persistence and the amount of information available about them, we undertook an exhaustive search of all public information sources including local and national newspapers, trade journals, United States Department of Agriculture, local and network TV, CNN, Florida Department of Citrus, Produce Manufacturing Association, University of Florida Center for Citrus Research and Education, and Florida Agricultural Statistics Service. For each shock we looked at all information starting two months before the shock until two months after the prices returned to their original level. The search was done through Lexus/Nexus using key words “FCOJ,” “frozen concentrated orange juice,” “FCOJ and freeze,” “orange,” “orange juice,” “orange juice and freeze,” “citrus,” and “beverage.” We also contacted the Produce Manufacturing Association which collects various trade data.

5. Two aggregate demand shocks could affect the orange juice market: (i) the Kuwait War of January 17, 1991–February 27, 1991, and (ii) the July 1990–March 1991 recession. We, however, found no evidence of such effects on the orange juice market.

6. Figure 2 displays the cost-price data for the Tropicana brand refrigerated orange juice, 96oz. Because of the difference in the Brix content of the frozen concentrated orange juice and refrigerated orange juice, we had to adjust the spot cost data downward to ensure the equality in the Brix-adjusted quality of the orange juice prices plotted on Figure 2.

7. The frequent promotional activity visible in the retail and wholesale prices are standard practice for retailers of these and similar products (Levy et al. 1998). Its main reason is the competitive nature of the retail food industry.
information on produce including orange juice. The Produce Manufacturing Association personnel helped us compile all information pertaining to orange juice around the time of the two shocks. In addition, we contacted all local TV stations in the Chicago area as well as the networks including CNN. We received information from WGN-Channel 9 and CNN.

After collecting these materials, we analyzed their content. Content Analysis, which is a systematic technique for analyzing a message content, is guided by rules to minimize the possibility that the findings reflect the analyst’s subjective predispositions (Holsti 1969; Kassarjian 1977). We had two research assistants independently analyze the contents of all the material collected and summarize their main theme. The findings reported below are based on consensus between the two researchers. This is a conservative approach since it requires that both researchers agree on the theme of all the reports. In published studies, an 80 percent or higher agreement is considered acceptable (Kassarjian 1977). Although, there is always a possibility of some bias when it comes to interpretation of the content of some information, we should note that in most cases the interpretation of the news reports we collected were relatively straightforward and necessitated very little subjective judgment because of the factual nature of the information. This factual nature of the information collected also diminished our concern regarding any potential journalistic inaccuracy of the reports themselves. Based on the content analysis of all information collected we conclude that there were some fundamental differences between the two cost shocks in terms of their size, persistence, and information. These findings along with the information collected are described in section 3.

2. RETAILER’S AND MANUFACTURERS’ REACTION TO THE COST SHOCKS

Reaction to the First Cost Shock

Following the initial spot cost shock during the week of December 21, 1989 (week 15), wholesale price increases reach their peak during the week of April 12, 1990 (week 31). Once the spot cost increases, it remains at that high level for about twenty-four weeks (weeks 20–44). The wholesale price exhibits a similar pattern, although it remains at the peak level for only seventeen weeks, from March 29, 1990, until July 19, 1990. On July 19, 1990, the wholesale price begins a downward ad-
justment to the commodity spot cost. The adjustment is gradual, and looks slower than the spot cost decrease. It takes the wholesale price over a year from the time it starts to decline (around week 47) until it reaches the preshock level (around week 100), while the spot price completes its decline to the preshock level by the 58th week. This suggests a possible asymmetry in the orange juice wholesale price adjustment, similar to gasoline prices (Borenstein, et al., 1992) and interest rates (Hannan and Berger 1991).13

The retail price response to the wholesale price increase is faster than the response of the wholesale price to the spot cost increase. In fact, the retail price may be increasing faster than the wholesale price during the 20th–28th weeks, suggesting that the retailers may be responding, at least in part, to the spot cost increase. This is clearly possible from informational point of view: the retailers, like other market participants, already had information on the cause and severity of this cost shock several weeks earlier. The retail price increases first to 13.3 cents/oz on week 21, to 14.1 cents/oz on week 29, and finally to 14.9 cents/oz on week 49, before starting to decline. The retail price remains at or above 14 cents/oz for almost 36 weeks, but it adjusts downward, once the adjustment begins, rather quickly. The decrease in the retail price begins on the 64th week, and is fully complete by the 82nd week. Thus, the retail price adjusts to the wholesale price substantially faster in comparison to the adjustment of the wholesale price to the spot cost. The data, therefore, suggest that the cost shock leads to an increase in the wholesale price and consequently to an increase in the retail price. The upward adjustment of both series seems to be proportional to the size of the cost shock.

\textit{Reaction to the Second Cost Shock}

The second shock occurs during the week of October 17, 1991 (110th week). Here the retail price shows no response to the spot cost increase. The wholesale price increases but the increase merely takes the wholesale price back to the level it was at during weeks 98–102, which is the same level as the pre-first-cost-shock level. The spot price begins declining almost as soon as it increases. The wholesale price, however, does not decline in response to this decrease. This pattern of behavior of the wholesale price suggests that its increase during the 110th week was merely a correction to the over-reaction it experienced during the weeks 98–102. Thus, the data suggest that both the wholesale and the retail price responded to the first cost shock, but they did not respond to the second cost shock.14

13 We should mention, however, that Müller (1999) examines in more detail the issue of asymmetric price adjustment to cost changes using a data set from the same retailer, and finds mixed results for the orange juice category.

14 We should note a possible link between price rigidity and promotional activities. For example, in response to higher costs, a retailer may decrease the frequency of “sales” instead of increasing the price. A visual examination of Figure 1, however, reveals that the decrease in the frequency of sales in response to the second cost shock is no different from a similar decrease in the sales frequency in response to the first cost shock, if one considers the first six months from the time the shocks occur. The idea, nevertheless, seems interesting and could be fruitfully explored with a larger data set, perhaps as part of a study of non-price-adjustment mechanisms.
3. DIFFERENCES BETWEEN THE TWO COST SHOCKS

The finding that manufacturers’ and retailers’ responses to upstream cost shocks are more rigid in response to the second cost shock than the first cannot be explained by variation in the nature of long-term relationships, industry concentration, etc., as these factors have not changed during the sample period. This led us to focus on differences between the two shocks that may explain the findings.\(^{15}\) Below we list these differences. In Table 1 we summarize the results.\(^{16}\)

The Cause of Shocks

First Cost Shock: The first shock was caused by a freeze. The Florida Department of Citrus (1994) lists it among the nine most “significant Florida Citrus Belt freezes” that occurred since 1957.\(^{17}\) The freeze was particularly severe as the temperature dropped to below 25°F and stayed there for almost two days.

Second Cost Shock: The second shock occurred when the United States Department of Agriculture released a forecast of a lower than expected citrus crop in its October 1991 report.\(^{18}\) As stated in the *Wall Street Journal* (October 14, 1991), “Behind the move was what traders and analysts called a shocking government forecast for a Florida crop of 136 million 90 pound boxes, or 10 percent below last year’s crop. Industry analysts expected the government to predict the Florida crop would be as much as 10 percent bigger than last year.” The United States Department of Agriculture report was released on October 12, 1991, after the closing of the New York Cotton Exchange. The spot price increased during the next three trading days followed by smaller increases during the following two weeks.

15. We have also explored the effect of cost changes on wholesale and retail prices econometrically by estimating a VAR model incorporating the exogeneity assumptions discussed in section 1 as the identifying restrictions. We estimated the model for the September 7, 1989–May 16, 1991 and May 23, 1991–November 19, 1992 periods. The split point was selected based on a recursive estimation of the model along with Chow test statistics. In order to quantify the idea of dynamic price adjustment to cost changes, we computed the cumulative impulse response of price in dollars to one dollar shock in cost. The findings, which are not reported here to save space but are available upon request, are consistent with our interpretation of the cost-price data. Specifically, we find that the first sample period is characterized by higher price flexibility than the second. It should be noted, however, that these impulse responses represent the dynamic response of prices to average cost shocks, not to the two specific shocks we have focused on. But since the first cost shock is larger than the second, the average shock in the first sample is larger than the second and therefore, the econometric findings are consistent with our data interpretation.

16. The only commonality of the two shocks is that neither shock was anticipated, according to Ed Moore of the Florida Department of Citrus and John Attaway of the Florida Agricultural Statistics Service (personal communication).

17. These freezes are unpredictable until 2–3 days before the freeze, and even then its severity is unknown (Roll 1984; Baur and Orazem 1994). According to John Attaway of the University of Florida Center for Citrus Research and Education (personal communication), Florida Department of Citrus defines as a “significant freeze” any freeze that results in a 25 percent of more decrease in crop. Indeed, as Table 2 indicates, the orange crop during the 1989–90 season was down by 24.8 percent and the yield was down by more than 26 percent.

18. United States Department of Agriculture is required to issue a monthly report of its Florida crop projections. The first report is released on the second week of October followed by monthly updates till July. Their goal is to help growers, processors, and other market participants to plan their future activities. The release of the United States Department of Agriculture orange crop reports is widely anticipated, especially the October report (Baur and Orazem 1994) but its content is unknown. Since the effect of these projections on the frozen concentrated orange juice market can be dramatic, United States Department of Agriculture keeps them extremely secret until their release.
<table>
<thead>
<tr>
<th></th>
<th>First Shock</th>
<th>Second Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>December 23–24, 1989.</td>
<td>October 13, 1991.</td>
</tr>
<tr>
<td>Cause:</td>
<td>A severe freeze.</td>
<td>USDA’s October 12 “shocking” forecast of 10% lower than last year’s crop. The market expected 10% higher than last year’s crop.</td>
</tr>
<tr>
<td>Temperature:</td>
<td>Below 25°F for two days.</td>
<td>January 1992 temperature was below normal. Spring temperatures and rainfall were above normal. As a result, harvest began early and it was concluded earlier than normally.</td>
</tr>
<tr>
<td>Damage to fruit:</td>
<td>A portion of the fruit on trees is lost.</td>
<td>No damage to fruit.</td>
</tr>
<tr>
<td>Damage to trees:</td>
<td>About 20% destroyed.</td>
<td>No damage to trees.</td>
</tr>
<tr>
<td>Effect on crop:</td>
<td>24.8% decrease in orange crop.</td>
<td>7.7% decrease in orange crop.</td>
</tr>
<tr>
<td>Effect on yield:</td>
<td>26.8% decrease in boxes/acre and 13.2% decrease in gallons/brix.</td>
<td>12.5% decrease in boxes/acre and 2.7% increase in gallons/brix.</td>
</tr>
<tr>
<td>Prices:</td>
<td>Stay high for about 28 weeks after the increase.</td>
<td>Start to decline immediately after the increase.</td>
</tr>
<tr>
<td>Print media:</td>
<td>28 mentions (23 reports mention extensive damage to the citrus crop and the resulting price increase).</td>
<td>17 mentions (11 reports mention price increase). But some suggest speculative and psychological reasons for it. Six reports in January 1992 mention orange juice prices actually coming down because the fear of freeze seem unwarranted.</td>
</tr>
<tr>
<td>TV Reports:</td>
<td>6 reports (WGN-Chicago and CNN); all six discuss the severity of the damage.</td>
<td>No TV report on price increase. The only report (on CNN, December 24, 1991) actually mentioned increased orange crop expectations.</td>
</tr>
<tr>
<td>FDC & USDA:</td>
<td>5 reports; all predict low output and high price. The freeze has been classified by Florida Department of Citrus as one of the 9 major freezes over the last 40 years.</td>
<td>One report: lower-than-expected 1991–92 crop was an aberration and did not change their forecast of record crops in the future.</td>
</tr>
<tr>
<td>Emergency:</td>
<td>Governor of Florida declares the entire state a disaster area and asks for Federal assistance.</td>
<td>None.</td>
</tr>
</tbody>
</table>

Note: A About 90% of the fruit was still on trees when the freeze occurred.
The Effect on Crops

First Cost Shock: The freeze destroyed about 20 percent of the trees and a portion of the fruit on trees thereby decreasing the orange crop from 146.6 million boxes to 110.2 million boxes, a decrease of 24.8 percent. The extent of damage can be seen in Table 2 where we report the Florida orange crop, price, and yield estimates. As the table indicates, the output of oranges during the 1989–90 growing season dropped by 24.8 percent in comparison to the 1988–89 season. The severity of the damage can also be seen by looking at the yield figures in terms of boxes/acre: during 1989–90, the yield was down by more than 26 percent and it was accompanied by a 35.5 percent increase in orange prices. Another indicator of the severity of the damage is the gallons/Brix yield reported in Table 3. This is a measure of the solid content of oranges and thus, of the quality of orange crop. According to the table, the United States Department of Agriculture’s gallons per Brix yield estimate has dropped from 1.48 in December 1989 to 1.21 in April 1990, which is a 18 percent drop.19

Second Cost Shock: The Florida orange crop dropped from 151.5 million boxes in the 1990–91 season to 139.8 million boxes in the 1991–1992 season, a decrease of 7.78 percent. The reason for this decline was lower than normal temperatures during...
January–February and higher than normal temperatures during spring months of 1992 (Florida Agricultural Statistics Service 1993). As a result, harvest began early because of the early bloom and ended earlier than normal. However, winter lows were above freezing and so no damage to trees or fruit was reported. Therefore, no decline in gallons per Brix yield is observed here. To the contrary, there was a slight increase, 2.7 percent, in this measure of yield. Moreover, according to the November 27, 1992, Report of the CNN’s John Zarrella, near perfect growing conditions had in the end produced the third largest crop ever of citrus fruits in Florida.

The Effect on Prices

First Cost Shock: Spot prices increased by 60 percent or $0.0353/oz. After the initial jump, the spot price remained high for over seven months before it started to decline. A process of increased importation of Brazilian orange juice eventually lead to a gradual reduction in orange juice prices. Brazilian and Mexican orange juice products are often used as a substitute for Florida product in the production of frozen concentrated orange juice. (For example, many frozen concentrated orange juice products produced in the United States, have labels which state “Contains orange juice concentrate from Florida, Mexico, and Brazil.”) At first, the market seemed uncertain about Brazil’s ability to meet the demand (see the January 17, 1990 report by the New York Times, “Orange Juice Prices Up on Reports That Brazil May Not Meet Demand.”) but according to the officials of the Florida Department of Citrus, these concerns never materialized. Indeed, in a series of articles published later in the year by the New York Times, the paper reported that “Orange juice prices are falling as US predicting big crops” (October 12, 1990), “Orange juice prices collapse to four-year low” (October 13, 1990), and “Orange juice prices down with speculation Brazil would dump frozen concentrate” (October 18, 1990).

Second Cost Shock: Spot prices increased by 36 percent or $0.0211/oz. In contrast to the first shock, the spot price started declining immediately after the jump. This is an indicator of the temporary nature of the second shock, especially in comparison to the first shock.

Media Reports

First Cost Shock: The first shock, which began with a forecast of extremely cold weather in Florida, was widely documented in newspapers and other print media with twenty-eight mentions between December 1989 and March 1990, and twenty-three of them talked about extensive damage to the citrus crop and higher orange juice prices. In fact, the Governor of Florida declared the entire state a disaster area and asked for federal assistance to farmers. Further, we found six TV reports on a local TV channel (WGN-Channel 9, Chicago) and on CNN and all six mentioned significantly reduced orange crop prospects due to the freeze.

Second Cost Shock: From October 1991 to January 1992 there were seventeen reports on this shock and eleven of them said prices were rising. However, over a short period of time, the market seems to have revised its forecast of the Florida crop up from the United States Department of Agriculture’s level. Further, these reports indicated that the price increase was due to speculative and psychological effects. For in-
stance, the Wall Street Journal (November 7, 1991) reported that “the cold in North Florida is not expected to affect the orange crop but the cold spell is having a psychological effect on the market.” All six reports published between January 7, 1992, and January 25, 1992, indicated that commodity prices were actually coming down. The two CNN reports from this period even emphasized the positive prospects of the Florida orange crop. Thus, all printed and TV reports seemed to suggest that this cost shock was of a temporary nature.

Government Reports

First Cost Shock: This shock was mentioned in five Florida Department of Citrus and United States Department of Agriculture reports. According to the July 12, 1990, United States Department of Agriculture report, the freeze reduced the output as well as the yield. These reports also suggested that commodity prices would go up due to reduced supply.

Second Cost Shock: Florida Department of Citrus and United States Department of Agriculture reports suggested that the lower-than-expected 1991–92 crop (that is, the forecasted decline in the citrus output) was an aberration and did not change their long-term (that is, the Florida Department of Citrus’ assessment of the Florida citrus output trend over the next three–five-year horizon) forecast of record crops in the future. In fact, in December 1991, United States Department of Agriculture (Report No. 91/92-3) revised upward its citrus crop estimate for the 1991–92 growing season from 191,195,000 boxes to 198,180,000 boxes. The actual production for that season turned out to be 208,170,000 boxes (United States Department of Agriculture Citrus Estimate Report No. 92/93-1).

4. DISCUSSION OF THE RESULTS AND CONCLUSION

The findings suggest that (i) prices are more rigid in response to small cost shocks in comparison to large shocks, (ii) prices are more rigid in response to temporary cost shocks in comparison to permanent shocks, and (iii) prices are more rigid in response to shocks on which there is limited information in comparison to shocks on which there is more information.

The idea that size of a shock may affect price rigidity has been exploited to test the empirical validity of menu cost theories. Under menu costs, firms will adjust to large shocks but not to small shocks. Therefore, large shocks will have a disproportionate effect on prices, which explains a large fraction of movements in postwar U.S. inflation (Ball and Mankiw 1995). A distinguishing characteristic of our result is that we find it at the level of an individual product using actual transaction prices.

20. Despite a wide variation in shock persistence across industries and markets (Brunner, Cukierman, and Meltzer 1983; Andersen 1994; Chirinko and Fazzari 1994), it has not received as much attention in the empirical price rigidity literature as other factors like industry concentration, which according to Carlton (1989) is the most commonly cited reason for price rigidity. As Carlton (1989, p. 911) suggests, “differences in market characteristics such as shock persistence may well be of more importance to macroeconomists than the effects of differences in concentration.”

21. We cannot prove that market participants actually “collected and used” more information about the first cost shock than the second. We are only able to demonstrate that the market provided more infor-
While some studies suggest the importance of shock persistence for price rigidity (see, for example, McCallum 1989; Caplin and Leahy 1991; Sheshinski and Weiss 1993; and Taylor 2000), the existing empirical evidence is mostly indirect and rely on aggregate data [see Meltzer (1995) for a recent survey]. We use a novel method to identify shock persistence. The usual practice is to econometrically identify temporary and permanent components of shocks. The reason for this practice, as Meltzer (1995) indicates, is that it is difficult to know how people assess economic variables’ persistence. We are able to overcome this difficulty by focusing on specific cost shocks and by studying in detail their actual causes and effects we evaluate their likely permanence. Our findings at the spot-to-wholesale level are also consistent with Carlton’s (1989) suggestion that a firm may not raise price in response to temporary cost increases for fear of losing customers who may interpret the price increase as permanent. Therefore, the firm will absorb the temporary cost increase.

Macroeconomic importance of imperfect information has long been recognized (Lucas 1972). It is difficult, however, to know what information economic agents really have. Macroeconomists, therefore, are forced to make ad hoc assumptions of various kinds about the content of this information. For example, most of the empirical studies that make use of anticipated or unanticipated series have to rely on forecast-generating equations with some autoregressive, autoregressive moving average, or autoregressive-distributed lag structures (Levy 1990). In contrast, here we study a very microlevel and well-specified product market where determination of the relevant information set is less ambiguous, in comparison to studies that use aggregate level data. Specifically, we collected all the relevant publicly available information we could find about the causes and effects of the shocks, and by analyzing the content of this information, we were able to assess the extent of the actual information the orange juice market participants probably had.

The product categories we study are widely used and representative of typical retail items. Also, the pricing practices of the supermarket chain we study are representative of many large U.S. grocery chains. Thus, the market we study is representative of the U.S. grocery industry. However, this is only one case study. Further, the data only contain two large cost shocks. Therefore, future research should examine price response to cost shocks across other products, retailers, and markets, in order to see whether the results we report generalize to other industries and markets.

22. See also Caplin and Leahy (1995).
23. For example, the analysis conducted here could be fruitfully applied to larger scanner data sets such as the data sets used by Barsky et al. (2002), Chen, Bergen, and Levy (2001), and Chevalier, Kashyap, and Ross (2002).
APPENDIX: INFORMATION ON THE TWO COST SHOCKS

TABLE A1

INFORMATION ON THE FIRST COST SHOCK: NEWSPAPER AND OTHER PRINT MEDIA REPORTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Source</th>
<th>Section</th>
<th>Page</th>
<th>Summary of the Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 20, 1989</td>
<td>Wall Street Journal</td>
<td>Money</td>
<td>16</td>
<td>Freeze severely damages orange crop in Florida.</td>
</tr>
<tr>
<td>December 20, 1989</td>
<td>New York Times</td>
<td>Business</td>
<td>16</td>
<td>Orange juice price up from fear of freeze.</td>
</tr>
<tr>
<td>December 24, 1989</td>
<td>Chicago Tribune</td>
<td>Business</td>
<td>4</td>
<td>Orange juice future prices soar as cold threatens Florida.</td>
</tr>
<tr>
<td>December 27, 1989</td>
<td>Chicago Tribune</td>
<td>Business</td>
<td>1</td>
<td>Citrus growers optimistic little harm from freeze.</td>
</tr>
<tr>
<td>December 29, 1989</td>
<td>New York Times</td>
<td>Business</td>
<td>1</td>
<td>Florida Governor declared the entire state a disaster area due to the impact of the freeze on the orange crop. Has sought Federal aid and low-interest loans for farmers.</td>
</tr>
<tr>
<td>December 30, 1989</td>
<td>New York Times</td>
<td>Business</td>
<td>41</td>
<td>Orange juice prices up as Florida faces warm weather (means oranges fall from trees and rot).</td>
</tr>
<tr>
<td>January 8, 1990</td>
<td>Time</td>
<td></td>
<td>59</td>
<td>Citrus production severely reduced by cold.</td>
</tr>
<tr>
<td>January 12, 1990</td>
<td>Chicago Tribune</td>
<td>Business</td>
<td>1</td>
<td>Sharp cutback on orange crop estimates.</td>
</tr>
<tr>
<td>January 12, 1990</td>
<td>USA Today</td>
<td></td>
<td>1B</td>
<td>Citrus production off 25% for 1989–90.</td>
</tr>
<tr>
<td>January 13, 1990</td>
<td>Chicago Tribune</td>
<td>Business</td>
<td>7</td>
<td>Orange juice futures up sharply as first estimates indicate that losses were as severe as expected.</td>
</tr>
<tr>
<td>January 17, 1990</td>
<td>New York Times</td>
<td>Business</td>
<td>18</td>
<td>Orange juice prices up on reports that Brazil may not meet demand.</td>
</tr>
<tr>
<td>January 23, 1990</td>
<td>New York Times</td>
<td>Business</td>
<td>17</td>
<td>Orange juice prices up to record high with reports of damage higher than expected.</td>
</tr>
<tr>
<td>January 25, 1990</td>
<td>New York Times</td>
<td>C</td>
<td>7</td>
<td>Orange juice is going to get more expensive, says Dan Shafer of Minute Maid. Crop reduced 30% by freeze. Brazil price 132–192 per pound this week. Dr. Bob Behr of Florida Department of Citrus says price increase will not be felt until late February, prices should go up 20%, yearly average of up only 8.5%.</td>
</tr>
<tr>
<td>February 3, 1990</td>
<td>Packer</td>
<td>Business</td>
<td>7A</td>
<td>December freeze will raise Florida orange juice prices in 1989–90.</td>
</tr>
<tr>
<td>February 8, 1990</td>
<td>New York Times</td>
<td>Business</td>
<td>21</td>
<td>Orange juice prices up, freeze heading South?</td>
</tr>
<tr>
<td>March 8, 1990</td>
<td>New York Times</td>
<td>Business</td>
<td>19</td>
<td>Orange juice prices up on speculation that Department of Agriculture would revise crop estimate downward. (The report came out on March 9, 1990.)</td>
</tr>
<tr>
<td>Date</td>
<td>Source</td>
<td>Reporter</td>
<td>Report Length</td>
<td>Summary of the Information</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>December 23, 1989</td>
<td>WGN Channel 9, Chicago</td>
<td>Tony Noce</td>
<td>1:27 minutes</td>
<td>Discussing the Florida freeze and its disastrous impact on the Florida citrus crop.</td>
</tr>
<tr>
<td>December 22, 1989</td>
<td>CNN</td>
<td>Chris Abel</td>
<td>2:01 minutes</td>
<td>Discussing the disastrous impact of the freeze on citrus growers.</td>
</tr>
<tr>
<td>December 23, 1989</td>
<td>CNN</td>
<td>Dan Ronin</td>
<td>2:01 minutes</td>
<td>Discussing the effect of cold Florida weather on orange juice, travel, and other effects.</td>
</tr>
<tr>
<td>December 26, 1989</td>
<td>CNN</td>
<td>Grant Perry</td>
<td>1:43 minutes</td>
<td>Discussing the damaged orange crop due to freeze and reduced crop prospects.</td>
</tr>
<tr>
<td>January 22, 1990</td>
<td>CNN</td>
<td>John Zarrella</td>
<td>1:52 minutes</td>
<td>Discussing the impact of freeze on the orange crops in Florida.</td>
</tr>
<tr>
<td>Date</td>
<td>Source</td>
<td>Page</td>
<td>Summary of the Information</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>October 25, 1989</td>
<td>Citrus Outlook</td>
<td>1</td>
<td>United States Department of Agriculture’s October 12, 1989, crop forecast placed Florida’s 1989–90 round-orange and Temple production at 133.0 million boxes, 17.3 million lower than production in 1988–89. The reduced crop prospects stem from the effects of a February (1989) freeze which hurt a significant amount of early bloom and reduced the amount of fruit set.</td>
<td></td>
</tr>
<tr>
<td>October 25, 1989</td>
<td>Citrus Outlook</td>
<td>4</td>
<td>United States per capita orange-juice consumption has averaged 5.0 SSE gallons during this decade. The annual figures for the 1980s, as reported by Florida Department Citrus (1994, p. 60), tend to fluctuate around this average.</td>
<td></td>
</tr>
<tr>
<td>October 25, 1989</td>
<td>Citrus Outlook</td>
<td>8</td>
<td>United States Department of Agriculture’s October 12, 1989, crop forecast estimates the 1989–90 juice yield at 1.48° Brix gallons per box, 3.3 percent lower than in 1988–89.</td>
<td></td>
</tr>
<tr>
<td>January 11, 1990</td>
<td>United States Department of Agriculture Citrus Estimate, Report No. 89/90-4</td>
<td></td>
<td>Estimates for 1989–90 Florida Oranges were revised downwards in January to 157,950,000 boxes from October and December 1989 estimates of 194,350,000 boxes.</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Source</td>
<td>Section</td>
<td>Page</td>
<td>Summary of the Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>October 14, 1991</td>
<td>Wall Street Journal</td>
<td>Money</td>
<td>12</td>
<td>Orange juice price up after United States Department of Agriculture forecast of a 10% smaller crop than the previous year, when industry analysts expected 10% larger crop.</td>
</tr>
<tr>
<td>October 31, 1991</td>
<td>New York Times</td>
<td>Business</td>
<td>1</td>
<td>Orange juice price up sharply in trading after two days of lower prices.</td>
</tr>
<tr>
<td>November 5, 1991</td>
<td>New York Times</td>
<td>Business</td>
<td>22</td>
<td>Orange juice price up, though cold weather not to effect Florida.</td>
</tr>
<tr>
<td>November 6, 1991</td>
<td>New York Times</td>
<td>Business</td>
<td>16</td>
<td>Orange juice price up, Brazil and U.S. processors raise prices.</td>
</tr>
<tr>
<td>November 7, 1991</td>
<td>Wall Street Journal</td>
<td>Money</td>
<td>16</td>
<td>Orange juice prices up, because Brazil and U.S. processors raise prices. The cold in North Florida is not expected to effect the orange crop, but the cold spell is having a psychological effect on the market.</td>
</tr>
<tr>
<td>November 12, 1991</td>
<td>New York Times</td>
<td>Business</td>
<td>21</td>
<td>Orange juice price up sharply after two down days.</td>
</tr>
</tbody>
</table>
TABLE A5
INFORMATION ON THE SECOND COST SHOCK: TELEVISION REPORTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Source</th>
<th>Reporter</th>
<th>Report Length</th>
<th>Summary of the Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 24, 1991</td>
<td>CNN</td>
<td>Robert Vito</td>
<td>1:3 minutes</td>
<td>Reporting that orange crops had picked up after previous year’s weak crop.</td>
</tr>
</tbody>
</table>

TABLE A6
INFORMATION ON THE SECOND COST SHOCK: FLORIDA DEPARTMENT OF CITRUS’ ECONOMIC RESEARCH DEPARTMENT AND U.S. DEPARTMENT OF AGRICULTURE REPORTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Source</th>
<th>Page</th>
<th>Summary of the Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 23, 1991</td>
<td>Citrus Outlook</td>
<td>1</td>
<td>Florida citrus production is expected to approach record levels during the 1991–92 season even though they fall well below the expectations according to United States Department of Agriculture’s October 10 forecast. The lower-than-expected 1991–92 crop estimate was attributed to the moderate winter weather prior to the bloom period, which caused the trees to be in a vegetative state. The downturn in forecast orange production for the 1991–92 season should be viewed as an aberration. This season’s forecast does not change the trend of much larger, if not record, crops in the years ahead.</td>
</tr>
<tr>
<td>November 12, 1991</td>
<td>United States Department of Agriculture Citrus Estimate, Report No. 91/92-3</td>
<td></td>
<td>United States Department of Agriculture estimate for 1991–92 in October 1991 was 191,195,000 boxes of Florida oranges. This was revised upward to 198,180,000 in December.</td>
</tr>
</tbody>
</table>
LIST OF INFORMATION SOURCES CONSULTED

Governmental Sources

Agricultural Prices, United States Department of Agriculture
Agricultural Statistics, United States Department of Agriculture
Citrus Outlook, Economic Research Department, Florida Department of Citrus
Citrus Reference Book, Economic and Market Research Department, Florida Department of Citrus
Crop Production, United States Department of Agriculture
Fruit and Tree Nuts Situation and Outlook Report, United States Department of Agriculture
Producer Price Indexes, United States Bureau of Labor Statistics

In addition we talked to numerous individuals and experts from:

Florida Department of Citrus
University of Florida Center for Citrus Research and Education
Florida Agricultural Statistics Service
New York Cotton Exchange
Florida Citrus Commission
Produce Manufacturing Association
Florida Department of Agriculture and Consumer Services
Florida Department of Citrus, Economic and Marketing Research Department

Trade Publications

Newspapers/Popular Magazines

Chicago Tribune
The New York Times
Time
USA Today
The Wall Street Journal

Television Stations (in Chicago)

WLS [ABC]
WMAQ [NBC]
WBBM [CBS]
WGN-Channel 9, Chicago
CNN

Radio Stations (in Chicago)
NPR
WMAQ
WBBM

LITERATURE CITED

Holsti, O. *Content Analysis for Social Sciences and Humanities*. Reading: Addison-Wesley, 1969.

Slade, Margaret E. “Sticky Prices in a Dynamic Oligopoly: An Investigation of \((s, S) \) Thresholds,” The University of British Columbia, manuscript, March 1996.

