Working Paper No. 206

“Zombie Lending and Depressed Restructuring in Japan”

ANIL K. KASHYAP

RICARDO J. CABELLERO

AND

TAKEO HOSHI

George J. Stigler Center for the Study of the Economy and the State
The University of Chicago
Zombie Lending and Depressed Restructuring in Japan

Ricardo J. Caballero
Massachusetts Institute of Technology and NBER

Takeo Hoshi
University of California at San Diego, Graduate School of International Relations and
Pacific Studies and NBER

Anil K Kashyap
University of Chicago, Graduate School of Business, Federal Reserve Bank of Chicago
and NBER

This draft: March 2006

We thank numerous seminar participants and our colleagues for useful comments. We especially benefited from helpful comments by Olivier Blanchard, Roger Bohn, Toni Braun, Kenichiro Kobayashi, Hugh Patrick, and Makoto Sakuragawa. We thank Yoichi Arai, Munecika Katayama and Tatsuyoshi Okimoto for expert research assistance. Caballero thanks the National Science Foundation for research support. Hoshi thanks the Research Institute of Economy, Trade, and Industry (RIETI) for research support. Kashyap thanks the Center for Research in Securities Prices and the Stigler Center both at the University of Chicago Graduate School of Business for research support. This research was also funded in part by the Ewing Marion Kauffman Foundation. The views expressed in this paper are those of the authors and not necessarily of any of the organizations with which we are affiliated or which sponsored this research. Future drafts of this paper will be posted to http://gsbwww.uchicago.edu/fac/anil.kashyap/research. First draft: September 2003.
Zombie Lending and Depressed Restructuring in Japan

Abstract:

In this paper, we propose a bank-based explanation for the decade-long Japanese slowdown following the asset price collapse in the early 1990s. We start with the well-known observation that most large Japanese banks were only able to comply with capital standards because regulators were lax in their inspections. To facilitate this forbearance the banks often engaged in sham loan restructurings that kept credit flowing to otherwise insolvent borrowers (that we call zombies). Thus, the normal competitive outcome whereby the zombies would shed workers and lose market share was thwarted. Our model highlights the restructuring implications of the zombie problem. The counterpart of the congestion created by the zombies is a reduction of the profits for healthy firms, which discourages their entry and investment. In this context, even solvent banks will not find good lending opportunities. We confirm our story’s key predictions that zombie-dominated industries exhibit more depressed job creation and destruction, and lower productivity. We present firm-level regressions showing that the increase in zombies depressed the investment and employment growth of non-zombies and widened the productivity gap between zombies and non-zombies.
1. Introduction

This paper explores the role that misdirected bank lending played in prolonging the Japanese macroeconomic stagnation that began in the early 1990s. The investigation focuses on the widespread practice of Japanese banks of continuing to lend to otherwise insolvent firms. We document the prevalence of this forbearance lending and show its distorting effects on healthy firms that were competing with the impaired firms.

Hoshi (2000) was the first paper to call attention to this phenomenon and its ramifications have been partially explored by a number of observers of the Japanese economy. There is agreement that the trigger was the large stock and land price declines that began in early 1990s: stock prices lost roughly 60% of their value from the 1989 peak within three years, while commercial land prices fell by roughly 50% after their 1992 peak over the next ten years. These shocks impaired collateral values sufficiently that any banking system would have had tremendous problems adjusting. But in Japan the political and regulatory response was to deny the existence of any problems and delay any serious reforms or restructuring of the banks.1 Aside from a couple of crisis periods when regulators were forced to recognize a few insolvencies and temporarily nationalize the offending banks, the banks were surprisingly unconstrained by the regulators.

The one exception to this rule is that banks had to comply (or appear to comply) with the international standards governing their minimum level of capital (the so-called Basle capital standards). This meant that when banks wanted to call in a non-performing loan, they were likely to have to write off existing capital, which in turn pushed them up against the minimum capital levels. The fear of falling below the capital standards led many banks to continue to extend credit to insolvent borrowers, gambling that somehow these firms would recover or that the government would bail them out.2 Failing to

1 For instance, in 1997, at least 5 years after the problem of non-performing loans was recognized, the Ministry of Finance was insisting that no public money would be needed to assist the banks. In February 1999 then Vice Minister of International Finance, Eisuke Sakakibara, was quoted as saying that the Japanese banking problems “would be over within a matter of weeks.” As late as 2002, the Financial Services Agency claimed that Japanese banks were well capitalized and no more public money would be necessary.

2 The banks also tried to raise capital by issuing more shares and subordinated debt, as Ito and Sasaki (2002) document. When the banks raised new capital, however, almost all came from either related firms (most notably life insurance companies) that are dependent on the banks for their financing, or the
rollover the loans also would have sparked public criticism that banks were worsening the recession by denying credit to needy corporations. Indeed, the government also encouraged the banks to increase their lending to small and medium sized firms to ease the apparent “credit crunch” especially after 1998. The continued financing, or “ever-greening,” can therefore be seen as a rational response by the banks to these various pressures.

A simple measure of the ever-greening is shown in Figure 1, which reports the percentage of bank customers that received subsidized bank credit. We defer the details of how the firms are identified until the next section, but for now all that matters is that the universe of firms considered here is all publicly traded manufacturing, construction, real estate, retail, wholesale (excluding nine general trading companies) and service sector firms. The top panel of the figure shows roughly 30% of these firms were on life support from the banks in the early 2000s. The lower panel, which shows comparable asset weighted figures, suggests that about 15% of assets reside in these firms. As these figures show, these percentages were much lower in the 1980s and early 1990s.

By keeping these unprofitable borrowers (that we call “zombies”) alive, the banks allowed them to distort competition throughout the rest of the economy. The zombies’ distortions came in many ways, including depressing market prices for their products, raising market wages by hanging on to the workers whose productivity at the current firms declined and, more generally, congesting the markets where they participated. Effectively the growing government liability that came from guaranteeing the deposits of banks that supported the zombies served as a very inefficient program to sustain employment. Thus, the normal competitive outcome whereby the zombies would shed workers and lose market share was thwarted. More importantly, the low prices and high wages reduce the profits that new and more productive firms could earn, thereby

government when banks received capital injections. See Hoshi and Kashyap (2004, 2005) for more on this “double-gearing” between banking and life insurance sectors.

3 Subsequently when the Long-Term Credit Bank was returned to private ownership, a condition for the sale was the new owners would maintain lending to small and medium borrowers. The new owners tightened credit standards and the government pressured them to continue supplying funds, see Tett (2003) for details.

4 See Ahearne and Shinada (2004) for some direct evidence suggesting that inefficient firms in the non-manufacturing sector gained market share in Japan in the 1990s. See also Kim (2004) and Restuccia and Rogerson (2003) for attempts to quantify the size of these types of distortions.
discouraging their entry and investment. In addition, even solvent banks saw no particularly good lending opportunities in Japan.

In the remainder of the paper we document and formalize this story. In the next section, we describe the construction of our zombie measure. There are a number of potential proxies that could be used to identify zombies. As we explain, however, measurement problems confound most of these alternatives.

Having measured the extent of zombies, we then model their effects. The model is a standard variant of the type that is studied in the literature on creative destruction. It is designed to contrast the adjustment of an industry to a negative shock with and without the presence of zombies. We model the presence of zombies as a constraint on the natural surge in destruction that would arise in the wake of an unfavorable technological, demand, or credit shock. The main effect of that constraint is that job creation must slow sufficiently to re-equilibrate the economy. This means that during the adjustment the economy is characterized by what Caballero and Hammour (1998, 2000) have called “sclerosis” — the preservation of production units that would not be saved without the banks’ subsidies — and the associated “scrambling” — the retention of firms and projects that are less productive than some of those that do not enter or are not implemented due to the congestion caused by the zombies.

In the fourth section of the paper, we assess the main aggregate implications of the model. In particular, we study the interaction between the percentage of zombies in the economy and the amount of restructuring, both over time and across different sectors. We find that the rise of the zombies has been associated with falling levels of aggregate restructuring, with job creation being especially depressed in the parts of the economy with the most zombies firms. We then explore the impact of zombies on sectoral performance measures. We find that the prevalence of zombies lowers productivity.

In section 5 we analyze firm-level data to directly look for congestion effects of the zombies on non-zombie firms’ behavior. We find that investment and employment growth for healthy firms falls as the percentage of zombies in their industry rises. Moreover, the gap in productivity between zombie and non-zombie firms rises as the percentage of zombies rises. Most strikingly, the presence of the zombies depresses activity the most for the fastest growing healthy firms. All of these findings are consistent
with the predictions that zombies crowd the market and that the congestion has real effects on the healthy firms in the economy. Simple extrapolations using our regression coefficients suggest that cumulative size of the distortions (in terms of investment, or employment) is substantial.

In the final section of the paper we conclude by summarizing our results and discussing the implications of our findings for Japan’s outlook.

2. Identifying zombies

Our story can be divided into two parts. First, the banks misallocated credit by supporting zombie firms. Second, the existence of zombie firms interfered with the process of creative destruction and stifled growth. Our measure of zombie should not only capture the misallocation of credit but also be useful in testing the effect of zombies on corporate profitability and growth.

2.1 Defining Zombies

There is a growing literature examining the potential misallocation of bank credit in Japan (see Sekine, Kobayashi, and Saita (2003) for a survey). Much of the evidence is indirect. For instance, several papers (including Hoshi (2000), Fukao (2000), Hosono and Sakuragawa (2003), Sasaki (2004)) study the distribution of loans across industries and note that underperforming industries like real estate or construction received more bank credit than other sectors that were performing better (such as manufacturing).5

Peek and Rosengren (2005) offer the most direct and systematic study to date on the potential misallocation of bank credit. They find that bank credit to poor performing firms often increased between 1993 and 1999. These firms’ main banks are more likely to lend to the firms than other banks dealing with these firms when the firm’s profitability

5 Other indirect evidence comes from studies such as Smith (2003), Schaede (2005) and Jerram (2004) that document that loan rates in Japan do not appear to be high enough to reflect the riskiness of the loans. Sakai, Uesugi and Watanabe (2005), however, show that poorly performing firms (measured by operating profits or net worth) still pay higher bank loan rates and are more likely to exit compared with better performing firms, at least for small firms. Finally, see also Hamao, Mei and Xu (forthcoming) who show that firm-level equity returns became less volatile during the 1990s and argue that this is likely due to a lack of restructuring in the economy.
is declining. This pattern of perverse credit allocation is more likely when the bank’s own balance sheet is weak or when the borrower is a keiretsu affiliate. Importantly, non-affiliated banks do not show this pattern.

We depart from past studies by trying to identify zombies by classifying firms only based on our assessment of whether they are receiving subsidized credit, and not by looking at their productivity or profitability. This strategy permits us to evaluate the effect of zombies on the economy. If instead we were to define zombies based on their operating characteristics, then almost by definition industries dominated by zombie firms would have low profitability, and likely also have low growth. Rather than hard-wiring this correlation, we want to test for it.

The challenge for our approach is to use publicly available information to determine which firms are receiving subsidized credit: banks and their borrowers have little incentive to reveal that a loan is miss-priced. Because of the myriad of ways in which banks could transfer resources to their clients, there are many ways that we could attempt to measure subsidies. To get some guidance we used the Nikkei Telecom 21 to search the four newspapers published by the Nihon Keizai Shimbun-sha (*Nihon Keizai Shimbun, Nikkei Kin’yū Shimbun, Nikkei Sangyō Shimbun, Nikkei Ryūtsū Shimbun*) between January 1990 and May 2004 for all news articles containing the words “financial assistance” and either “management reconstruction plan” or (“corporation” and “reconstruction”). The summary of our findings are given in Table 1.

Our search uncovers 120 separate cases. In most of them there were multiple types of assistance that were included. As the table shows, between interest rate concessions, debt-equity swaps, debt forgiveness, and moratoriums on loan principal or interest, most of these packages involve reductions in interest payments or outright debt forgiveness by the troubled firms.

The decision by a bank to restructure the loans to distressed companies in these ways, rather than just rolling over the loans, helps reduce the required capital needed by the bank. Without such restructuring, banks would be forced to classify the loans to

6 The Japanese phrases were Kin’yu Shien AND (Keiei Saiken Keikaku OR (Kigyo AND Saiken)).

7 These patterns are consistent with the claim by Tett and Ibison (2001) that almost one-half of the public funds injected into the banking system in 1998 and 1999 were allowed to be passed on to troubled construction companies in the form of debt forgiveness.
those borrowers as “at risk”, which usually would require the banks to set aside 70% of the loan value as loan loss reserves. With restructuring, the banks need only move the loans to the “special attention” category, which requires reserves of at most 15%.

In light of the evidence in Table 1, we concentrate on credit assistance that involves a direct interest rate subsidy. We proceed in three steps. First, we calculate a hypothetical lower bound for interest payments \(R^* \) that we expect only for the highest quality borrowers. We then compare this lower bound to the observed interest payments. Finally, we make several econometric assumptions to use the observed difference between actual interest rate \(r \) and notional lower bound rate \(r^* \) to infer cases where we believe subsidies are present.

2.2 Detecting Zombies

The minimum required interest payment for each firm each year, \(R^*_{i,t} \), is defined as:

\[
R^*_{i,t} = r_{s_{i,t}} BS_{i,t-1} + \left(\frac{1}{3} \sum_{j=1}^{5} r_{l_{i,j}} \right) BL_{i,t-1} + r_{c_{i,t}} Bonds_{i,t-1}
\]

where \(BS_{i,t} \), \(BL_{i,t} \), and \(Bonds_{i,t} \) are short-term bank loans (less than one year), long-term bank loans (more than one year), and total bonds outstanding (including convertible bonds (CBs) and warrant-attached bonds) respectively of firm \(i \) at the end of year \(t \), and \(r_{s_{i,t}} \), \(r_{l_{i,j}} \), and \(r_{c_{i,t}} \) are the average short-term prime rate in year \(t \), the average long-term prime rate in year \(t \), and the minimum observed coupon rate on any convertible corporate bond issued in the last five years before \(t \).

This estimate for the lower bound reflects the data constraints we face. In particular, all we know about the firms’ debt structure is the type of debt instrument (short-term bank borrowing, long-term borrowing that are due in one year and remaining long-term bank borrowing, bonds outstanding that are due in one year and remaining bonds outstanding, and commercial paper outstanding). In other words, we do not know the exact interest rates on specific loans, bonds or commercial paper, nor do we know the
exact maturities of any of these obligations. Finally, the interest payments we can measure include all interest, fee and discount expenses, including those related to trade credit.

The general principle guiding the choices we make is to select interest rates that are extremely advantageous for the borrower, so that R^* is in fact less than what most firms would pay in the absence of subsidies. For instance, by assuming that bond financing takes place at rcb_{min} over the last 5 years, t we are assuming not only that firms borrow using convertible bonds (which carry lower interest rates due to the conversion option), but also that these bonds are issued when rates are at their lowest. We provide additional discussion of the data choices used in constructing R^* and the alternative approaches that we examined for robustness check in Appendix 1.

To categorize firms we compare the actual interest payments made by the firms ($R_{i,t}$) with our hypothetical lower bound. We normalize the difference by the amount of total borrowing at the beginning of the period ($B_{i,t-1} = BS_{i,t-1} + BL_{i,t-1} + Bonds_{i,t-1} + CP_{i,t-1}$), where $CP_{i,t-1}$ is the amount of commercial paper outstanding for the firm i at the beginning of the period t, so that the units are comparable to interest rates. Accordingly we refer to the resulting variable, $x_{i,t} = \frac{R_{i,t} - R^*_{i,t}}{B_{i,t-1}} = r_{i,t} - r^*_{i,t}$, as the interest rate gap. This measure is “conservative” because we assume the minimum interest rates that are extremely advantageous to the firm and because the interest payment, $R_{i,t}$, includes interest expenses on items beyond our concept of total borrowing (such as interest expenses on trade credit).

Note that given our procedure to construct r^* we will not be able to detect all types of subsidized lending. In particular, any type of assistance that lowers the current period’s interest payments can be detected: including debt forgiveness, interest rate concessions, debt for equity swaps, or moratoriums on interest rate payments, all of which appeared to be prevalent in the cases studied in Table 1. On the other hand, if a

8 In addition to the cases studied below, Hoshi (2006) examines the potential problems that might arise from rapid changes in interest rates. For example, if interest rates fell sharply and actual loan terms moved as well, then our gap variable could be misleading about the prevalence of subsidized loans. He constructs an alternative measure (that would be more robust to within year interest rate changes) and concludes that this sort of problem does not appear to be quantitatively important.
bank makes new loans to a firm at normal interest rates that are then used to pay off past loans, then our gap variable will not capture the subsidy. Likewise, if a bank buys other assets from a client at overly generous prices our proxy will not detect the assistance.

We explore two strategies for identifying the set of zombie firms from the calculated interest rate gaps. Our baseline procedure classifies a firm \(i \) as a zombie for year \(t \) whenever its interest rate gap is negative \((x_{it} < 0) \). The justification for this strategy is the conservative philosophy underlying the construction of \(r^* \). If \(r^* \) is a perfectly measured lower bound, then only a firm that receives a subsidy can have a negative gap. However, the problem of labeling a firm with \(x_{it} \) just above zero as non-zombie remains even under this perfect scenario.

Thus we resort to a second approach, which is more robust to misclassification of non-zombies. In this second approach we assume that the set of zombies is a “fuzzy” set. In the classical set theory, an element either belongs or does not belong to a particular set so that a 0-1 indicator function can be used to define a subset. In contrast, in fuzzy set theory an element can belong to a particular subset to a certain degree, so that the indicator function can take any value in the interval \([0, 1]\). When the images of the indicator function are confined to \([0, 1]\), a set defined by the indicator function is called a “crisp” set. Using this terminology, our first approach assumes the set of zombies is “crisp.” Our second approach, on the other hand, assumes the set is “fuzzy,” allowing some firms to be more-or-less zombie-like.\(^9\)

The indicator function that defines a fuzzy subset is called “membership function,” which we assume to be (for the set of zombie firms):

\[
z(x; d_1, d_2) = \begin{cases}
1 & \text{if } x < d_1 \\
d_2 - x & \text{if } d_1 \leq x \leq d_2, \quad \text{where } d_1 \leq 0 \leq d_2 \\
0 & \text{if } x > d_2
\end{cases}
\]

(1)

The shape of the membership function is determined by the two parameters, \(d_1 \) and \(d_2 \). Figure 2 shows this membership function along with the indicator function implicit in our first approach. It is easy to see the second approach degenerates to our first approach when \(d_1 \) and \(d_2 \) are both zero.

\(^9\) See Nguyen and Walker (2006) for an introduction to the fuzzy set theory.
The second approach is appealing given the fuzzy nature of the concept of “zombie firms.” These are defined to be those firms that receive sufficient financial help from their creditors to survive in spite of their poor profitability. It is inherently difficult to specify how much financial help is considered to be sufficient, even if we had access to much more information than we do about individual firms. Our fuzzy approach acknowledges this limitation and assigns numbers between 0 and 1 to those firms whose zombie status is ambiguous.

Given the asymmetry (toward conservatism) inherent in the construction of \(r^* \), we assume that \(d_1 \) is closer to zero than \(d_2 \). In what follows we show results for \((d_1, d_2) = (0, 50\text{bp})\) and \((d_1, d_2) = (-25\text{bp}, 75\text{bp})\), where bp stands for basis points. Thus, in the first case, we assume a firm with \(x_{it} \) below zero is a definite zombie and a firm with \(x_{it} \) above 50 basis points is definitely a non-zombie: any firm with \(x_{it} \) between zero and 50 basis points has “zombiness” between 0 and 1.

2.3 Quantifying the prevalence of zombies

Figure 1 shows the aggregate estimate of the percentage of zombies using our baseline procedure. As mentioned earlier, treating all firms equally we see that the percentage of zombies hovered between 5 and 15 percent up until 1993 and then rose sharply over the mid 1990s so that the zombie percentage was above 25 percent for every year after 1994. In terms of the congestion spillovers, a size weighted measure of zombies is likely to be more important. Weighting firms by their assets we see the same general pattern but with the overall percentage being lower, closer to 15 percent in the latter part of the sample.

We view the cross-sectional prevalence of zombies as another way to assess the plausibility of our definition. To conduct this assessment, we aggregated the data used in Figure 1 into five industry groups covering manufacturing, construction, real estate, retail and wholesale (other than the nine largest general trading companies), and services – recall that all the firms included here are publicly traded. The zombie index for an industry is constructed by calculating the share of total assets held by the zombie firms –
and for the remainder of the paper we concentrate on asset weighted zombie indices. In addition to showing the industry distribution, we also compute the zombie percentages implied by our second procedure with \((d_1, d_2) = (0, 50\text{bp})\) and \((d_1, d_2) = (-25\text{bp}, 75\text{bp})\).

Figure 3 shows the zombie index for each industry from 1981 to 2002. We draw three main conclusions from these graphs. Starting with the upper left hand panel that shows the data for the entire sample, first notice that the crisp zombie measure (our baseline case) and the two fuzzy measures share similar time series movements (with the correlation between the crisp measure and the two fuzzy measures exceeding 0.99). Second, the other five panels show that the proportion of zombie firms increased in the late 1990s in every industry. The third key conclusion is that the zombie problem was more serious for non-manufacturing firms than for manufacturing firms. In manufacturing, the crisp measure suggests that zombie index only rose from 3.11\% (1981-1993 average) to 9.58\% (1996-2002 average). In the construction industry, however, the measure increased from 4.47\% (1981-1993 average) to 20.35\% (1996-2002 average). Similar large increases occurred for the wholesale and retail, services, and real estate industries.

There are a variety of potential explanations for these cross-sectional differences. For instance, Japanese manufacturing firms face global competition and thus could not easily be protected without prohibitively large subsidies. For example, many of the troubled Japanese automakers were taken over by foreign firms rather than rescued by their banks during the 1990s. In contrast, there is very little foreign competition in the other four industries.

A second important factor was the nature of the shocks hitting the different sectors. For instance, the construction and real estate industries were forced to deal with the huge run-up and subsequent collapse of land prices mentioned earlier. Thus, the adjustment for these industries was likely to be more wrenching than for the other sectors.

But the most important point about the differences shown in Figure 3 is that they confirm the conventional wisdom that bank lending distortions were not equal across sectors and that the problems were less acute in manufacturing – see Sekine et al (2003) for further discussion. Thus, regardless of which explanation one favors as to why this
might be the case, we view it as particularly reassuring that our zombie index confirms this conventional view.

Figure 4, our last plausibility check, shows the asset weighted percentages of zombies for the firms that are above and below the median profit rate for their industry. To keep the graphs readable we show only the crisp measures, but the other measures show similar patterns. In manufacturing the differences are not very noticeable, with slightly fewer high profit firms being labeled as zombies. In the remaining industries, particularly in real estate and construction, it appears that our measure of zombies is identifying firms that are systematically less profitable than the non-zombies, particularly from the mid-1990s onward.

3. A model of the effect of zombie firms on restructuring

To analyze the effect of zombies we study a very simple environment that involves entry and exit decisions of both incumbent firms and potential new firms, which we later extend to analyze expansion and contraction decisions of existing firms. As a benchmark we start with a normal environment where all decisions are based purely on the operating profits from running a firm. We then contrast that environment to one where some incumbent firms (for an unspecified reason) receive a subsidy that allows them to remain in business despite negative operating profits.

3.1 The Environment

The essential points of interest can be seen in a model where time is discrete (and indexed by t). A (representative) period t starts with a mass m_t of existing production units. The productivity of the incumbents varies over time and the current level of productivity for firm i in year t, y_{it}^o, is:

$$y_{it}^o = A + \varepsilon_{it}^o$$
where \(\varepsilon^n_i \) is an idiosyncratic shock that is distributed uniformly on the unit interval. The main predictions from this model do not depend on the persistence of the productivity shocks, so we assume these shocks are i.i.d.

In addition to the incumbents, there are also a set of potential entrants and we normalize their mass to be \(\frac{1}{2} \). The potential entrants each draw a productivity level, \(y^n_i \), before deciding whether to enter or not. The productivity for \(i^{th} \) potential new firm in year \(t \) is:

\[
y^n_i = A + B + \varepsilon^n_i
\]

with \(B > 0 \) and \(\varepsilon^n_i \) distributed uniformly on the unit interval. The shock \(\varepsilon^n_i \) is again assumed to have no persistence. These assumptions imply that on average the potential new firms will be more productive (and more profitable) than the incumbents (for one period only, then they become incumbents as well). However, we also assume that there is an entry cost, \(\kappa > 0 \), that they must pay to start up.

Finally, both new and old units must incur a cost \(p(N_t) \) in order to produce, where \(N_t \) represents the number of production units in operation at time \(t \), i.e., the sum of the existing units that do not exit and new entrants. The cost \(p(N) \) is increasing with respect to \(N \) and captures any scarce input such as land, labor or capital. Indeed \(p(N) \) captures any reduction in profits due to congestion or competition.\(^{10}\) For our purposes, all the predictions we emphasize will hold as long as \(p(N) \) is a strictly increasing continuous function of \(N \). For simplicity, we adopt the linear function:

\[
p(N_t) = N_t + \mu.
\]

\(^{10}\) For example, we can motivate \(p(N) \) as the reduction in profits due to competition in the output market. Suppose the price of output is given by \(D'(N) \), a decreasing function of \(N \), and that the cost of production for each production unit is a constant, \(C \). Under our assumption on productivity, an incumbent decides to stay in the market (and a potential entrant decides to enter the market) if \(D'(N)(A+\varepsilon) - C > 0 \), or equivalently, \(A+\varepsilon - C/D'(N) > 0 \). In this specific example, \(p(N) \) is \(C/D'(N) \), which is increasing with respect to \(N \).
where the intercept μ is potential shift variable that captures cost changes and other profit shocks.

3.2 Decisions

This basic model will quickly generate complicated dynamics because the existing firms have paid the entry cost and thus face a different decision problem than the new firms for which the entry cost is not sunk. These dynamics are not essential for our main predictions, so we assume that $B = \kappa$. In this case, the exit decision by incumbents and the entry decision by potential entrants become fully myopic. Since productivity shocks are i.i.d. and there is no advantage from being an insider (the sunk cost of investment is exactly offset by a lower productivity), both types of units look only at current profits to decide whether to operate.

Letting \overline{y}^o and \overline{y}^n denote the reservation productivity of incumbents and potential entrants, respectively, we have:

$$\overline{y}^o - p(N) = 0,$$

$$\overline{y}^n - \kappa - p(N) = 0.$$

In this case it is straightforward to find the mass of exit, D_t, and entry, H_t, respectively:

$$D_t = m_t \left[1 - \int_{p(N_t) - A}^i d_i\right] = m_t (p(N_t) - A),$$

$$H_t = \frac{1}{2} \int_{p(N_t) - A}^{\overline{y}^n} d_i = \frac{1}{2} \left(1 - (p(N_t) - A)\right).$$

Adding units created to the surviving incumbents yields the total number of units operating at time t:
\[N_t = H_t + m_t - D_t = \left(\frac{1}{2} + m_t \right) \left(1 - \left(p(N_t) - A \right) \right). \]

(4)

3.3 Equilibrium and Steady State

We can now solve for the steady state of the normal version of the economy. The first step is to replace \(p(N) \) with \(N + \mu \) in (4). The notation is simplified if we define \(S \) to be composite shock that is equal to \(A - \mu \). Note that a lower \(S \) indicates either higher costs (higher \(\mu \)) or lower average productivity (smaller \(A \)). This yields the equilibrium number of units:

\[N_t = \left(\frac{1}{2} + m_t \right) \left(1 + S \right). \]

(5)

Given the total number of operating units, we can solve for equilibrium rates of destruction and creation by substituting (5) into (2) and (3):

\[D_t = m_t \left(\frac{1/2 + m_t - S}{3/2 + m_t} \right) \]

(6)

\[H_t = \frac{1}{2} \left(\frac{1 + S}{3/2 + m_t} \right). \]

(7)

The dynamics of this system are determined by:

\[m_{t+1} = N_t. \]

(8)

In steady state, the mass of incumbents remains constant at \(m^{**} = N^{**} \), which requires that creation and destruction exactly offset each other or, equivalently, that
\(m_t = N_t \). Using the latter condition and \((5)\), yields a quadratic equation for \(m^\infty \), which has a unique positive solution of:

\[
m^\infty = \frac{S - \frac{1}{2} + \sqrt{\left(\frac{1}{2} - S\right)^2 + 2(1 + S)}}{2}
\]

For small values of \(S \), we can approximate the above by:

\[m^\infty \approx \frac{1}{2} + \frac{2}{3} S. \]

In our subsequent analysis we will assume that the economy begins in a steady state and that the initial (pre-shock) value of \(S \), \(S_0 \), is 0. Given this normalization, the corresponding steady state will be \(m_0 = N_0 = 1/2 \) and \(H_0 = D_0 = 1/4 \).

3.4 A (permanent) Recession

We can now analyze the adjustment of the economy to a profit shock. By construction the model treats aggregate productivity shifts, changes in \(A \), and cost shocks, changes in \(\mu \), as equivalent. So what follows does not depend on which of these occurs. We separate the discussion to distinguish between the short- and long-run impact of a decline in \(S \) from \(S_0 = 0 \) to \(S < 0 \) (lower productivity or higher costs). By the “short-run” we mean for a fixed \(m = m_0 = 1/2 \). By the “long-run,” on the other hand, we mean after \(m \) has adjusted to its new steady state value \(m_1 = 1/2 + (2/3)S_1 \).

It is easy to see from \((6)\) and \((7)\) that in the short-run:

\[
\frac{\partial D}{\partial S} = -\frac{1}{4} = -\frac{\partial H}{\partial S}.
\]

\[(9) \]
That is, when S drops, creation falls and destruction rises, leading to a decline in \(N \) (see (4)). In other words, in a normal economy, negative profit shocks are met with both increased exit by incumbents and reduced entry of new firms.

Over time, the gap between destruction and creation reduces the number of incumbents (recall from (4) and (8) that \(\Delta N = H-D \)), which lowers the cost of inputs \((p(N)) \) and eventually puts an end to the gap between creation and destruction caused by the negative shock.

Across steady states, we have that:

\[
\frac{\partial m}{\partial S} = \frac{\partial N}{\partial S} = \frac{2}{3}.
\]

The number of production units falls beyond the initial impact as time goes by and the positive gap between destruction and creation closes gradually. Note that since \(N \) falls less than one for one with \(S \), the long run reduction in the input cost due to reduced competition is not enough to offset the direct effect of a lower \(S \) on creation. That is, creation falls in the long run. And since creation and destruction are equal in the long run, the initial surge in destruction is temporary and ultimately destruction also ends up falling below its pre-shock level.11

3.5 Zombies

Suppose now that “banks” choose to protect incumbents from the initial surge in destruction brought about by the decline in \(S \). There are a variety of ways that this might be accomplished. We assume that the banks do this by providing just enough resources to the additional units that would have been scrapped so that they can remain in operation.

11 This long run level effect is undone when creation and destruction are measured as ratios over \(N \), as is often done in empirical work. However, the qualitative aspects of the short run results are preserved since empirically the flows are divided by either initial employment or a weighted average of initial and final employment.
With this assumption, a firm that does receive a subsidy is indifferent to exiting and operating, and thus entry and exit decisions remain myopic.

The maximum short run effect would be on impact, when the normal economy would show a spike in destruction (see (5)). Under the zombie-subsidy assumption, we have that:

\[D^*_0 = D_0 = \frac{1}{4}. \]

The post-shock destruction remains the same as the pre-shock level. The lack of adjustment on the destruction margin means that now creation must do all the adjustment:

\[N^*_0 = H^*_0 + m_0 - 1/4 = H^*_0 + 1/4. \]

Replacing this expression into (3), we can solve out for \(H \):

\[H^*_0 = \frac{1}{4} + \frac{S}{3}, \]

This can be compared to the impact change in creation that occurs in the absence of zombies. Doing so, we see:

\[\frac{\partial H^*_0}{\partial S} = \frac{1}{3} > \frac{1}{4} = \frac{\partial H^*_0}{\partial S}. \]

That is, a decline in \(S \) has a much larger negative effect on creation in the presence of zombies. This result is a robust feature of this type of model. In particular, the same qualitative prediction would hold even if we had not suppressed the dynamics and had allowed persistence in the productivity shocks and a gap between entry costs and the productivity advantage of new firms. Intuitively, this is the case because the adverse shock causes the labor market to clear with fewer people employed. If destruction is suppressed, then the labor market clearing can only occur if job creation drops precipitously.
As Caballero and Hammour (1998, 2000) emphasize, both this “sclerosis” — the preservation of production units that would not be saved without the banks’ subsidies — and the associated “scrambling” — the retention of firms that are less productive than some of those that do not enter due to the congestion caused by the zombies – are robust implications of models of creative destruction when there are frictions against contracting.

Compared with a normally functioning economy, we have shown the existence of zombies softens a negative shock’s impact on destruction and exacerbates its impact on creation. What is the net effect on the number of firms? It is straightforward to show:

\[
\frac{\partial N_{z}^{*}}{\partial S} = \frac{1}{3} < \frac{1}{2} = \frac{\partial N_{0}^{*}}{\partial S}.
\]

That is, in response to a negative shock, \(N\) falls by less if there are zombies, which means that in the presence of zombies the reduced destruction is not fully matched by the additional drop in creation. This is another intuitive and robust result. This occurs because as job creation falls, the marginal entrant’s productivity rises. This high productivity allows the marginal entrant to operate despite the higher cost induced by (comparatively) larger \(N\).

A final important prediction of the model is the existence of a gap in profitability (net of entry costs) between the marginal entrant and the marginal incumbent when there are zombies.\(^{12}\) At impact, the destruction does not change, so that all the firms with idiosyncratic productivity shocks above the old threshold (1/2) remain in the industry. On the other hand, new entrants have to clear a higher threshold to compensate for the negative shock in \(S\) (which is only partially offset by the lower congestion following the negative shock). As a result, the profitability of the marginal entrant is inefficiently higher than that of the marginal incumbent. The difference is given by:

\(^{12}\) Note that a wedge like this one also arises when there is a credit constraint on potential entrants but not on incumbents. In our model depressed entry results from the congestion due to zombies, and the gap is due to the subsidy to incumbents. Clearly, however, if the two mechanisms coexist they would reinforce each other, as congestion would reduce the collateral value of potential entrants.
\[
\left[\left(\frac{1}{2} + \frac{S_1}{3} \right) - S_1 \right] - \frac{1}{2} = -\frac{2}{3} S_1 > 0.
\]

In summary, the model makes two robust predictions. The first is that the presence of zombies distorts the normal creation and destruction patterns to force larger creation adjustments following shocks to costs, productivity or profits. Second, this distortion depresses productivity by preserving inefficient units at the expense of more productive potential entrants. Accordingly, productivity will be lower when there are more zombies and as the zombies become more prevalent they will generate larger and larger distortions for the non-zombies.

By slightly re-interpreting what a “firm” means in our model, we can also see how the congestion effects caused by zombies will affect firms with different levels of profitability. Instead of assuming that a firm has only one project, suppose a firm consists of a set of projects, some of which are in place (incumbents) but the others have not been started (potential entrants). Then, the above model can be re-interpreted as a model in which projects that are hit by productivity shocks every period and firms are deciding which projects to terminate (exits) and which new projects to start (entries).

Suppose further that firms differ in the quality of their projects. In particular, some (high profitability) firms have many projects that are unusually profitable, but some other (low profitability) firms have only a few profitable projects. Low profitability firms will not start many new projects, and the presence of zombies may not influence this very much. Higher profitability firms, however, are more likely to have some new projects that become profitable each period that might be crowded out by the zombies. This effect, however, could be non-monotonic because if a firm has a sufficiently good mix of projects, then its projects might still be worth initiating. We will also test for whether higher quality firms are disproportionately harmed by the zombies, but (because of the potential non-monotonicity) we see this prediction as less robust than the previous two.
4. The effect of zombies on job creation, destruction and productivity

We use the two robust predictions of the model to guide our search for evidence that the zombie problem has affected Japan’s economic performance significantly. We begin by looking at aggregate cross-industry differences. In the next section, we study firm-level data to characterize how the behavior of the non-zombie firms has been altered by the presence of zombie competitors.

Because our zombie indices exist from 1981 onwards, we start by calculating the average of the crisp zombie index for each industry from then until 1993 and compare that to the average for the late 1990s (1996-2002). We use the differences in these two averages to correct for possible biases in the level of zombie index and any industry-specific effects. It makes little difference as to how we define the pre-zombie period. In particular, the results we show would be very similar if we took the normal (non-zombie) period to be 1981 to 1990, or 1990 to 1993. Our evidence consists of relating creation, destruction, and productivity data to this change in the zombie index, in order to see if these measures are more distorted in the industries where zombie prevalence has increased the most.

Our most direct evidence on this point is in Figure 5, which plots the rate of job creation and destruction against the change in the zombie index. We use the job flow measures constructed by Genda et al. (2003) as proxies for the concepts of entry and exit in our model. Their measures are based on The Survey of Employment Trends, conducted by the Ministry of Welfare and Labor biannually on a large sample of establishments that employ five or more regular workers. The series used for our analysis include not only the job creation (destruction) at the establishments that were included in the survey in both at the beginning and at the end of the year, but also the estimated job creation (and destruction) by new entrants (and the establishments that exited). To control for the industry specific effects in job creation/destruction, we look at the difference between the average job creation (destruction) rate for the 1996-2000 period and the average for the 1991-1993 period. We are restricted to using the 1991—93 data as a control because figures of Genda et al. start only in 1991 and we stop in 2000 because that is the last year they cover.
The top of Figure 5 shows that the job destruction rate in the late 1990s increased from that in the early 1990s in every industry, as we would expect to see following an unfavorable shock to the economy.13 More importantly, the graph shows that the surge in destruction was smaller in the industries where more zombies appeared. Thus, as we expected, the presence of zombies slows down job destruction.

The second panel of Figure 5 shows that the presence of zombies depresses job creation. Creation declined more in the industries that experienced sharper zombie growth. In manufacturing, which suffered the least from the zombie problem, job creation hardly changed from the early 1990s to the late 1990s. In sharp contrast, job creation exhibits extensive declines in non-manufacturing sectors, particularly in the construction sector.

Of course not all sectors were equally affected by the Japanese crash in asset prices and the slowdown that followed it. For example, construction, having benefited disproportionately from the boom years, probably also was hit by the largest recessionary shock during the 1990s. A large shock naturally raises job destruction and depresses job creation further. Despite this source of (for us, unobserved) heterogeneity, the general patterns we expected from job flows hold. One way of controlling for the size of the shock is by checking whether in more zombie-affected sectors, the relative adjustment through job creation is larger. In this metric, it is quite clear from Figure 5 that job creation has borne a much larger share of the adjustment in construction than in manufacturing.

Our evidence on productivity distortions caused by the interest rate subsidies is given in Figure 6. In the model, zombies are the low productivity units that would exit the market in the absence of help from the banks. Their presence lowers the industry’s average productivity both directly by continuing to operate and indirectly by deterring entry of more productive firms. The productivity data here are from Miyagawa, Ito and Harada (2004) who study productivity growth in 22 industries. Figure 6, which plots the average growth of the total factor productivity (TFP) from 1990 to 2000 against the

13 Our simple model assumes that the job destruction rate stays the same even after a negative shock in a zombie industry. It is straightforward to relax this by assuming, for example, that 90\% of zombies are rescued by banks. None of the major results would change. Job destruction would rise following a negative shock but not as much as it would under the normal environment.
change in the crisp zombie index, shows that the data are consistent with the model’s implication: the regression line in the figure confirms the visual impression that industries where zombies became more important were the ones where TFP growth was worst.\(^{14}\)

5. Firm-level zombie distortions

We read the evidence in Figures 5 and 6 as showing that zombies are distorting industry patterns of job creation and destruction, as well as productivity in the ways suggested by the model. To test directly the model’s predictions, we next look at firm-level data to see if the rising presence of zombies in the late 1990s had discernible effects on the healthy firms (which would suffer from the congestion created by the zombies).

The data we analyze are from the Nikkei Needs Financial dataset and are derived from income statements and balance sheets for firms listed on the first and second sections of the Tokyo Stock Exchange. The sample runs from 1981 to 2002, and it contains between 1,844 and 2,506 firms depending on the year. We concentrate on three variables: employment growth (measured by the number of full-time employees), the investment rate (defined as the ratio of investment in depreciable assets to beginning of year depreciable assets measured at book value), and a crude productivity proxy (computed as the log of sales minus 1/3 the log of capital minus 2/3 the log of employment). In all the regressions reported below we dropped observations in the top and bottom 2.5% of the distribution of the dependent variable.

The simplest regression that we study is:

\[
\text{Activity}_{ijt} = \delta D_{jt} + \beta \text{nonz}_{ijt} + \chi Z_{jt} + \varphi \text{nonz}_{ijt} * Z_{jt} + \epsilon_{ijt} \tag{11}
\]

where activity can be either the investment rate, the percentage change in employment, or our productivity proxy, \(D_{jt}\) includes a set of annual indicator variables and a set of industry dummy variables, \(\text{nonz}_{ijt}\) is the probability that the firm is non-zombie, and \(Z_{jt}\) is the percentage of industry assets residing in zombie firms.

\(^{14}\) Of course this correlation could arise because industries that had the worst shocks wound up with the most zombies. We can disentangle these explanations by using firm-level data (see below).
Because of the reduced form nature of both the regression equation and the modeling of the subsidies to the zombies, we do not attempt to interpret most of the coefficients in these regressions. For instance, we include the year dummies to allow for unspecified aggregate shocks. Likewise, we can imagine that the zombies’ subsidies are so large that they wind up investing more (or adding more workers) than the healthy firms; so we do not propose to test the theory by looking at the estimates for β, the coefficient for the non-zombies. The one exception to this general principle is that for the productivity specification the model clearly predicts that non-zombies will have higher average productivity than zombies.

We instead focus on what we see as the novel prediction of the theory: that the rising zombie congestion should harm the non-zombies. This prediction suggests that φ would be negative in the investment and employment regressions, and be positive in the productivity specification. Note that for the investment (employment) specification one might normally suspect that as the percentage of sick firms in the industry rises, the healthy firms would have more (relative to the sick ones) to gain from investing (expanding employment). Thus, under normal circumstance there would be good reasons to expect φ to be positive rather than negative.

The main reason, other than ours, for finding negative φ is if the zombie percentage in the industry is somehow standing in for the overall (un)attractiveness of operating in the industry. To this potential objection to our results we note two things. First, our definition of zombies, by virtue of only using interest rate payments, does not guarantee that growth opportunities are necessarily bad just because the zombie percentage is high. Second, in order to be consistent with our findings, the reaction to industry conditions must be different for zombies and non-zombies. In particular, non-zombies must be more affected by an industry downturn than zombies for φ to come out negative. Nonetheless, we seek to find other controls for business opportunities for the healthy firms to minimize this potential omitted variable bias. Our main control to address this problem is to add current sales growth of each firm to the regression specification. Thus, our alternative regression is:
Activity_{ijt} = \delta D_{jt} + \beta \text{nonz}_{ijt} + \gamma Z_{jt} + \phi \text{nonz}_{ijt}^{*} Z_{jt} + \theta s_{ijt} + \\
\psi \text{nonz}_{ijt}^{*} s_{ijt} + \zeta s_{ijt}^{*} Z_{jt} + \pi \text{nonz}_{ijt}^{*} Z_{jt}^{*} s_{ijt} + \nu_{it} \tag{12}

where s_{ijt} is the growth rate of sales and the other variables are defined as in equation (11).

The coefficient \(\pi\) in (12) reveals an additional potential effect for the zombies. If \(\pi\) is different from zero, then it implies that faster growing healthy firms and slower growing healthy firms are differentially affected by the presence of the zombies. As mentioned earlier, a natural interpretation of the model suggests that the zombie distortions should be larger for the healthiest firms. This would be the case if \(\pi < 0\).

The second through fourth columns of Table 2 shows our estimates for equations (11) for the crisp zombie index. We draw three main conclusions from this simple specification. First, as predicted by the theory, increases in percentages of zombie firms operating in an industry significantly reduces both investment and employment growth for the healthy firms in the industry.\(^{15}\) Our second finding, shown in column 4, is that the non-zombies have significantly higher productivity than the zombies. Finally, the same column shows that the productivity gap between zombies and non-zombies rises as the percentages of zombies in an industry rises. These findings are consistent with the main predictions of our model.

As mentioned above, a competing explanation for the sign of the estimated \(\phi\) in equation (11) is that the industry zombie percentage is an indirect measure of the growth opportunities in the industry, even for the healthy firms. We address this concern by including controls that directly capture growth opportunities. Columns 5 and 6 report estimates of equation (12), which include contemporaneous firm-specific sales growth as the potential growth proxy; for the investment specification, this type of accelerator specification generally performs quite well in a-theoretic horse-races among competing specifications (see Bernanke, Bohn and Reiss (1988)).

\(^{15}\) We ran a similar regression using investment rates for US firms covered in the Compustat database between 1995 and 2004. In this regression \(\phi\) was insignificantly different from zero. The limited information on debt structure in Compustat no doubt introduces noise in zombie assignments and we did explore many alternatives to deal with this. But this result suggests to us that there is not a mechanical reason to find that \(\phi\) is significantly negative in this type of regression.
In both columns the estimated coefficient on sales growth is highly significant, and in each equation the R^2 is nearly twice as high as that in the simpler specifications in columns 2 and 3. In the specifications with sales growth, the estimated magnitude of the φ’s drops compared to the simpler specifications, but they remain negative and significant. This indicates that while some of the interaction term’s significance may have been due to omitting proxies for growth opportunities, it is not the sole reason.

More substantively, in both of these specifications the estimated values for π are significantly negative. This triple interaction suggests that the fastest growing non-zombie (healthy) firms are the most impaired by the widespread presence of zombie firms in their industry.

In Appendix 2 we report a long list of robustness exercises, including fuzzy versions of equations (11) and (12), regressions omitting marginal zombies, as well as using different measures of minimum required interest rates in the construction of zombie indicators. While the level of significance and some of the point estimates vary across these multiple scenarios, the general flavor of the results does not. More specifically, the estimates for φ tend to be negative and significant for the investment and employment regressions and positive and significant for the productivity regressions. The estimates of π are more sensitive to the exact specification, and vary more for the employment regressions than for the investment specifications.

In the remainder of our discussion we attempt to quantify the impact of zombie firms on investment and employment growth of non-zombies. We focus on the five non-manufacturing industries, where our asset weighted measures of zombies were particularly high in the late 1990s. For a typical non-zombie firm in each of these industries, we estimate how much more the non-zombie would have invested or increased employment if there had not been so many zombies in the industry. We consider two alternative low zombies scenarios. In “Case 1,” we assume that the zombie index stayed at its average value from 1981 through 1992 for each industry and calculate how much more a typical non-zombie firm would have invested (or employed) over the next ten years. In “Case 2,” we assume that the zombie index for the industry was the same as

more specifically, the investment (or employment) is estimated to have been higher than the actual level by $(\hat{\pi} + \varphi)(actual \ zombie \ index - alternative \ zombie \ index)$.

16
that for manufacturing for each year from 1993 to 2002. We calculate the cumulative investment under these two scenarios and compare it to the typical amount of annual investment (defined as the average of the median rates) during this period. For employment, we compare the cumulative decline attributable to the zombies with the typical annual change over the period (again defined as the average of the median rates). In all of these calculations we take the regression estimates based on the crisp zombie indices in Table 2, and ignore any feedback from industry equilibrium considerations.

Table 3 shows both investment and employment growth in non-zombie firms would have been higher in all these industries had there been less zombies. In some industries, the difference is quite large. For example, for the typical non-zombie firm in the wholesale industry the cumulative investment loss was about 12.1% of capital, which was slightly more than one year worth of investment during this period. The employment growth of a typical non-zombie real estate developer would have been about higher by 3.0 percentage points at the end of the period if the zombie percentage had not risen (which can be compared to the average hiring in the industry of 0.62% per year). Overall, these effects are substantial.

In our main specifications we find the effect of zombie infestation on non-zombies depends on the level of sales growth of the non-zombie (negative coefficient estimates on the three way interaction). While these triple interaction results are less robust than the double interactions, it is still interesting to document the magnitude of the differential impacts suggested by our estimates.

Figure 7 uses estimates from Table 2 for equation (12) to infer the differential effect of varying degrees of zombie infestation for non-zombies with different levels of sales growth; formally, this amounts to studying $\frac{\partial^2 Activity}{\partial^{\text{nonz}} \partial Z} = \phi + \pi s$. The left panel shows the zombie distortion on investment is significantly worse for fast growing firms; the dotted lines in the graph show the 95 percent (asymptotic) confidence intervals. Not only are these marginal effects significant, the overall quantitative impact is large. For instance, for a firm with ten percent sales growth, if the industry zombie percentage were to increase from 0.1 to 0.2, investment would fall by 1.3 percentage points per year; if the firm instead had 15 percent annual sales growth, the investment drop would be 1.55
percentage points per year. Given the median investment rate of 14.7% per year (1993-2002) we view these effects as large.

The right panel in the figure presents an analogous calculation for employment. The marginal effects again are significant (for all cases where sales growth is above two percent per year). For a firm with sales growth of ten percent per year, an increase in the zombie percentage from 0.1 to 0.2 would depress annual employment growth by 0.25 percentage points per year. Since employment growth for this sample of firms was approximately zero, the implied cumulative effect of the high level of zombies during the late 1990s is big.

Given the depressed condition of the economy between 1993 and 2002 it is not clear which benchmark to use in gauging the size of the effects. Normally, we would have expected to find some firms with sales growth of 10 to 15 percent per year, but these firms are quite rare in Japan over this period. Nonetheless, it appears that there were substantial distortions for the healthiest firms.

6. Final Remarks

Let us now take stock and discuss the implications of our empirical findings. First, the mechanism we have highlighted compounds the problems caused by a traditional credit crunch. Recall that the reduced form profit shock that we analyze in the model subsumes a simple credit crunch. Thus, if a pure contraction in credit availability was all that was going on, the economy would be expected to behave like the normal benchmark case we analyze. It follows that the evidence we presented to support the zombie model, also shows that a pure credit crunch explanation (a la Kitasaka and Ogawa (2000)) for the recent experience, while highly relevant, is insufficient.17

One key characteristic of our mechanism is that zombies create on-going distortions that lower job creation and industry productivity. A straightforward extension

17 There are also other implications that we have not tested that could be further used to distinguish these two models. For instance, the zombie model explains why the firms that do enter or expand need not have high values of Tobin’s Q – essentially because the zombie congestion costs lower their profitability. In contrast, a standard credit crunch model would predict that these firms should be earning rents by virtue of being able to operate against reduced competition. See Caballero and Hammour (2005) for a discussion of the channels through which financial factors may depress restructuring during recessions.
of the model would make long-run productivity growth endogenous. In this case the present value of the costs due to the suppression of restructuring generated by continuing forbearance with the zombies would greatly exceed calculation based only on the direct costs of subsidies.

Japanese regulators may have failed to recognize the large costs of allowing zombies to continue operating during the episode. For example, the capital injections given to Japanese banks in the late 1990s did not recapitalize the banks sufficiently so that they no longer had an incentive to evergreen. The forgone benefits that would have accrued had Japan returned at that point to having a normally functioning economy could have been large enough to justify a very generous transition policy package to the displaced workers that would have been released if the zombies were shuttered.18

Finally our description of the Japanese experience is similar to the diagnosis that has been used to describe the early phases of the transition of many former socialist economies to becoming market-oriented. In these economies the depressing effects on the private sector of the continued operation of state-owned enterprises (typically funded by state owned banks) is often noted; discussions of the current situation in China would be the latest of these examples. Also, note that the key to our mechanism is lack of restructuring, which may be also caused by legal bankruptcy procedures that protect debtors rather than by banks’ behavior. For example, in the U.S. airline industry it is routinely asserted that the industry has been plagued because unprofitable carriers go bankrupt, yet they fail to exit the industry (see Wessel and Carey (2005)). These cases suggest that the mechanism that we have sketched is not unique to Japan.19

18 The same reasoning applies to the question of whether the lack of liquidations in the U.S. airline industry raised or lowered the taxpayers’ costs of rationalizing the industry.
19 See Caballero (2006) for a discussion of different models and manifestations of sclerosis in macroeconomics.
References

Genda, Yuji, Hiroshi Teruyama, Soichi Ohta, Ryo Kanbayashi, Mamiko Ishihara, Yuji Senuma, Kazuhiro Sasaki, Kentaro Abe, Takayuki Kusajima, and Taku Morifuji, 2003, “Koyō Sōshutsu to Shitugyō ni kansuru Jisshō Kenkyū” (Job Creation and

Appendix 1

The variable R^* plays a critical role in our analysis. In this appendix we provide some additional details on the construction of this variable and the other data used in the analysis.

In constructing R^* our goal is to produce a plausible lower bound for what firms might pay to borrow. For the portion of the interest payments coming from short term bank loans, which accounts for about 40% to 45% of total lending in our sample, we believe that this is straightforward because almost no loans are made at rates below the prime rate (once we take into account all the origination and other fees). Thus, we view the use of the short term prime rate as relatively uncontroversial.\(^{20}\)

Ideally, we would find an equally conservative assumption for handling long-term loans. It is quite likely that interest payment on a new long-term loan would be above the prime rate at the time the loan is originated. Unfortunately, the available data on long-term bank debt gives just the stock outstanding without information on the exact maturity of the loans. So we assume that each firm’s long term loans have an average maturity of 2.5 years and with one-fifth having been originated in each year for five years. Five years corresponds to the average maturity of bank loans in the dataset of Smith (2003). This assumption implies that the right interest rate is an equally weighted average of the last five years of the long-term prime rates. Thus, we calculate the minimum required interest payment on the long-term loans by multiplying the outstanding long-term loans of all maturities with the five year average of the long-term prime rates.

Turning to the non-bank financing, we know that during the 1990s, roughly 40% of interest paying debt was bonds and about 3% was commercial paper. Our measure of the required payment ignores the interest payments for commercial paper. Given the limited importance of commercial paper financing and the low interest rates on the commercial paper for the 1990s, this is not likely to cause any serious problems for our analysis.

\(^{20}\) As alternative we instead computed a required rate that imposed a mark up over the London Interbank Borrowing (LIBOR) rate based on the average spreads reported in Smith (2003). This approach produced similar results regarding the numbers of firms with negative interest rate gaps.
For the remaining debt we assume that it was financed as advantageously as possible. Specifically, we assume that bond financing is done with CBs (which by their nature have lower yields) and that firms were always able to time the issues so that the rate is the lowest within the last five years. Implicitly, this presumes that the firms have perfect foresight and refinance their bonds every time there is a local trough in interest rates. This assumption is almost surely going to understate the required payments on corporate debt. For instance, from 1996 onwards this imputation procedure will assume that all bond financing is done at a zero interest rate. By assuming very low required interest rates on bonds, the approach reduces the risk of our misclassifying credit worthy companies that enjoy extreme low bond rates in the public market as zombies. On the other hand, the approach would increase the risk of failing to identify the zombies that pay interests on the bonds they issued in the past. Thus, we can be confident that any firms that we label as zombies must be getting very favorable interest rates from their banks. Put differently, by assuming access to such low bond financing rates our classification scheme will pick out only the most egregious zombies that receive massive help from their banks.

Besides this baseline procedure we also explored several approaches. One alternative centered on estimating the maturity structure of each firm each year. Here we just describe the calculation for long-term bank borrowing. We estimate the maturity structure of bonds in the same way.

We observe the total long-term bank borrowing for firm i at the end of accounting year t (BL_{it}) and the long-term bank borrowing that comes due within 1 year (BL_{1it}). Let NBL_{it} be the amount of new long-term bank loans that the firm i takes in during year t. We use the following equation to estimate NBL_{it}:

$$ NBL_{it} = \max \{ BL_{it} - BL_{it-1} + BL_{1it-1}, 0 \} $$

Let $BP(n)_{it}$ denote the amount of long-term bank loans to firm i that was given in year $t-n$ and still outstanding at the end of t. We assume the maximum maturity of long-term bank loans to be 10 years. If NBL is available for all years in the past 10 years, we can estimate $BP(n)$ recursively as follows.
\[BP(0)_{t-1} = \min \left\{ \text{NBL}_{t-1}, \max \left\{ \text{BL}_{t-1}, 0 \right\} \right\} \]

\[BP(n)_{t-1} = \min \left\{ \text{NBL}_{t-n-1}, \max \left\{ \text{BL}_{t-1} - \sum_{k=0}^{n-1} BP(k)_{t-1}, 0 \right\} \right\} \quad (n = 1, 2, \ldots, 8) \]

\[BP(9)_{t-1} = \max \left\{ BL_{t-1} - \sum_{k=0}^{8} BP(k)_{t-1}, 0 \right\} \]

If \(\text{NBL}_{t-n-1} \) is not available for \(n \geq n^* \), we stop the iteration at \(n = n^* \) and assume that the remaining borrowings (if any) are uniformly distributed across different maturities. Formally, this implies:

\[BP(0)_{t-1} = \min \left\{ \text{NBL}_{t-1}, \max \left\{ \text{BL}_{t-1}, 0 \right\} \right\} \]

\[BP(n)_{t-1} = \min \left\{ \text{NBL}_{t-n-1}, \max \left\{ \text{BL}_{t-1} - \sum_{k=0}^{n-1} BP(k)_{t-1}, 0 \right\} \right\} \quad (n < n^*) \]

\[BP(n)_{t-1} = \max \left\{ \frac{BL_{t-1} - \sum_{k=0}^{n^*-1} BP(k)_{t-1}}{10 - n^*}, 0 \right\} \quad (n \geq n^*) \]

The associated regression results are shown in Table A-3 (that we discuss in Appendix 2).

For bonds, we also adopted an extremely conservative approach that assumes the minimum required interest rate for bonds was zero for the entire sample period. This approach guarantees that any firms with a negative interest rate gap must be receiving unusually low interest rates on their bank borrowing. The regressions associated with this classification scheme are shown in Table A-4 (and are almost identical to those shown in Table 2).

The data for prime bank loan rates are taken from the Bank of Japan web site (http://www.boj.or.jp/en/stat/stat_f.htm). The subscribers’ yields for convertible bonds are collected from various issues of Kin’yu Nenpo (Annual Report on Finance) published by the Ministry of Finance. The remaining data we use for the regression analyses are taken from the Nikkei Needs Corporate Financial Database. The data are annual, so for instance when we refer to 1993 data they are from a firm’s balance sheet and income statement for the accounting year that ended between January and December of 1993.
Appendix 2

We checked the robustness of the significance of the estimated ϕ’s and π’s to several alternative measures of the required minimum interest rate r^* and zombie indices. Table A-1 repeats the regressions from Table 2, using the fuzzy zombie indices with $(d_1, d_2) = (0, 50\text{bp})$ and $(d_1, d_2) = (-25\text{bp}, 75\text{bp})$. We draw three conclusions from this table. First, the estimates of ϕ and π are smaller than those in Table 2. However, part of the difference can be explained by the fact that the industry zombie percentages are larger when we use the fuzzy zombie measures than when we use the crisp measures. Second, and probably related, for the estimates of (11), the statistical significance of the estimates of ϕ is similar to those in Table 2; in other words, the declines in the size of the coefficients are accompanied by smaller standard errors, so that the t-statistics are similar.

When we add sales growth (and the associated interaction terms) to the equations the significance of both ϕ and π falls. Their estimated signs remain negative in all cases, but most of the coefficients are no longer significant.21 So this specification is less robust to this alternative measure of zombies.

We also estimated the regressions dropping the observations with x_{it} between d_1 and d_2 entirely. Table A-2 shows the results. The estimates of ϕ in the investment and employment growth equations are again negative and statistically significant in almost all the cases. Indeed, the size of the coefficient is often higher when we drop the observations with x_{it} close to zero. For the productivity proxy, however, the estimated gap between the zombies and non-zombies (β in equation 11) rises substantially, while the estimated value of ϕ falls dramatically and becomes insignificant. The result for the three-way interaction term (non-zombie dummy x sales growth x industry zombie percentage) is not robust to this change in specification, either, suggesting the result critically depends on the inclusion of the observations with x_{it} close to zero.

We considered several other alternatives that are not reported since the results are so similar to those shown in Tables 2, A-1, and A-2. In particular, the regressions in Tables 2, A-1 and A-2 consider only the post 1993 period, when the zombie percentages

21 We could in principle use a mixture of crisp and fuzzy assignments to separate the individual firm classifications and the industry zombie percentages. We performed a few experiments of this type for employment growth and did not find any systematic ways in which the results were affected.
began to rise noticeably. When we re-estimated the Table 2 regressions to include the 1980s in the sample, the estimates for investment and employment growth remain unchanged, while those for productivity change. The estimated gap between the zombies and non-zombies rises substantially, while the estimated value of ϕ falls sharply and becomes insignificant.

We also tried different definitions of non-zombies. Specifically, we counted a firm as a non-zombie only if it is not classified as a zombie in two or three consecutive years. In both cases the estimates of ϕ continued to be significantly negative for the investment and employment regressions, and significantly positive for the productivity regression, but for one exception where the estimate of ϕ, while still negative, was not significant even at 20% level. The estimates of π were never statistically significant with this alternative definition of non-zombies, although the point estimates remained negative.

This alternative way of defining non-zombies can be applied to the fuzzy zombie indices as well. We did this by recoding the zombiness of each firm in each year to be the maximum of the z calculated using the equation (1) over the last two (or three) years. Thus, to be classified as a non-zombie for sure, a company has to have $z = 0$ for 2 (or 3) consecutive years. The regression results did not differ much from those in Table A-2. The estimates of ϕ are statistically significant with expected signs in the regressions without the sales growth. With sales growth, the estimates of π are not significant, and the estimates of ϕ often lose significance, although the point estimates remain negative.

Table A-3 shows the results using more detailed estimation of the maturity structure for long-term borrowings and bonds discussed in Appendix 1. The coefficient estimates on the simple interaction term (non-zombie dummy times industry zombie percentage) are similar to those in Table 2 in all the specifications. The standard errors are, however, sometimes larger, so that the estimates are statistically significant only at 10%. Under this alternative assumption about the maturity structure, the results for the three way interaction term (non-zombie dummy times sales growth times industry zombie percentage) disappear. The coefficient estimates on the three way interaction in the last two columns are not significantly different from zero.

Finally, Table A-4 shows the regressions under alternative assumption that the minimum required interest rate on bonds is zero. The results are essentially the same as
those in Table 2 except for the last column. In the employment change equation with sales growth variables, the estimates of the interaction terms cease to be statistically significant, although the point estimates fall only by small amounts.

All in all, the results of these robustness exercises are consistent with those in the main text, although it is apparent that the precisions of some of our estimates suffer as we dilute the measures of zombism and increase their robustness to different measurement and classification errors.
Figure 1: Prevalence of Firms Receiving Subsidized Loans in Japan

Raw Percentage

Asset-weighted Percentage

Note: Percentages calculated as described in the text, with \(d_1 = d_2 = 0 \) in equation 1.
Figure 2: Membership Function for a Fuzzy Zombie Set
Figure 3: Cross-Industry Incidence of Asset Weighted Zombie Percentage for Crisp and Fuzzy Zombie Definitions

Note: Fuzzie zombie definitions computed according to equation 1, see text for details.
Figure 4: Asset Weighted Zombie Percentages by Profitability

Note: Solid lines show zombie percentage for firms whose profits are above the median for the industry, dashed show below median.
Figure 5

Zombies and Job Destruction

Zombies and Job Creation
Figure 6

Zombies and TFP Growth

\[y = -0.3993x + 0.0336 \]

Change in the zombie index: 81-92 average to 93-02 average
Figure 7: Marginal Effect of the Industry Zombie Percentage for Non-Zombie Firms with Different Levels of Sales Growth
Table 1
Search Results For News Articles Regarding Restructured Companies

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hits for January 1990 through May 2004</td>
<td>1,196</td>
</tr>
<tr>
<td>Of which, related to private sector companies in Japan</td>
<td>1,085</td>
</tr>
<tr>
<td>Clear description of the content of “financial assistance” (excludes duplicate articles on the same case)</td>
<td>120</td>
</tr>
<tr>
<td>• New loans</td>
<td>19</td>
</tr>
<tr>
<td>• Interest concessions （金利減免）</td>
<td>36</td>
</tr>
<tr>
<td>• Purchase of new shares （新株引き受け）</td>
<td>29</td>
</tr>
<tr>
<td>• Debt-Equity swaps</td>
<td>26</td>
</tr>
<tr>
<td>• Debt forgiveness （債権放棄）</td>
<td>44</td>
</tr>
<tr>
<td>• Moratorium on loan principle （元本支払猶予）</td>
<td>11</td>
</tr>
<tr>
<td>• Moratorium on interest payments （利子支払猶予）</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes: Search words: “Financial assistance” AND (“Management Reconstruction Plan” OR (“Corporation” and “Reconstruction”)); actual phrases were 金融支援 AND (経営再建計画 OR (企業 AND 再建)).

Source: Nikkei Telecom 21.
Table 2
Impact of Zombie Firms on the Investment, Employment and Productivity of Non-Zombies
Using Baseline Zombie Estimates

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>I/K</th>
<th>ΔLog E</th>
<th>Log Sales – (\frac{2}{3}) Log E – (\frac{1}{3}) Log K</th>
<th>I/K</th>
<th>ΔLog E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.2390</td>
<td>0.0137</td>
<td>3.3842</td>
<td>0.2465</td>
<td>0.0162</td>
</tr>
<tr>
<td></td>
<td>(0.0084)</td>
<td>(0.0024)</td>
<td>(0.0196)</td>
<td>(0.0084)</td>
<td>(0.0025)</td>
</tr>
<tr>
<td>Non-Zombie Dummy</td>
<td>0.0256</td>
<td>0.00109</td>
<td>0.0139</td>
<td>0.0241</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td>(0.0056)</td>
<td>(0.001751)</td>
<td>(0.0135)</td>
<td>(0.0058)</td>
<td>(0.0017)</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>-0.1370</td>
<td>-0.0454</td>
<td>-0.3418</td>
<td>-0.0987</td>
<td>-0.0283</td>
</tr>
<tr>
<td></td>
<td>(0.0376)</td>
<td>(0.0116)</td>
<td>(0.0922)</td>
<td>(0.0364)</td>
<td>(0.0108)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.0885</td>
<td>-0.0232</td>
<td>0.2183</td>
<td>-0.0678</td>
<td>-0.0163</td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td>(0.0330)</td>
<td>(0.0102)</td>
<td>(0.0756)</td>
<td>(0.0297)</td>
<td>(0.0088)</td>
</tr>
<tr>
<td>Sales growth</td>
<td></td>
<td></td>
<td></td>
<td>0.1152</td>
<td>0.1078</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0318)</td>
<td>(0.0097)</td>
</tr>
<tr>
<td>Non-Zombie * Sales</td>
<td></td>
<td></td>
<td></td>
<td>0.1436</td>
<td>0.0160</td>
</tr>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
<td>(0.0376)</td>
<td>(0.0116)</td>
</tr>
<tr>
<td>Industry Zombie% *</td>
<td></td>
<td></td>
<td></td>
<td>1.1002</td>
<td>0.1674</td>
</tr>
<tr>
<td>Sales Growth</td>
<td></td>
<td></td>
<td></td>
<td>(0.1402)</td>
<td>(0.0427)</td>
</tr>
<tr>
<td>Non-Zombie * Sales</td>
<td></td>
<td></td>
<td></td>
<td>-0.5823</td>
<td>-0.0912</td>
</tr>
<tr>
<td>Growth * Industry</td>
<td></td>
<td></td>
<td></td>
<td>(0.1733)</td>
<td>(0.0535)</td>
</tr>
<tr>
<td>Zombie%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td>0.0537</td>
<td>0.0895</td>
<td>0.3599</td>
<td>0.1083</td>
<td>0.1700</td>
</tr>
</tbody>
</table>

The sample consists of between 1,844 and 2,506 publicly traded firms (depending on the year). Each regression is estimated after trimming the top and bottom 2.5% of observations (based on the dependent variable). White (1980) standard errors are reported in parentheses under each coefficient estimate. Industry and year dummies are also included in each regression. Any firm with actual interest payments below the hypothetical minimum is considered a zombie and any firm where this is not true is a non-zombie \((d_1=d_2=0 \text{ in equation (1)}) \). Two digit industry classifications are used throughout. The industry percentages for zombies are based on the share of total industry assets residing in zombie firms. Sales growth is the log difference of each firm’s sales. \(\text{I/K} \) is the ratio of investment in depreciable assets to beginning of period stock of depreciable assets (measured at book value). \(E \) is the total number of full time employees. \(K \) is the book value of depreciable assets.
Table 3
Cumulative Impact of Zombie Firms on Non-Zombies

A. Cumulative investment losses (1993-2002) of the median non-zombie firm in the high zombies industries

<table>
<thead>
<tr>
<th>Industry</th>
<th>Wholesale</th>
<th>Retail</th>
<th>Construction</th>
<th>Real Estate</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Average I/K: 1993-2002</td>
<td>0.1184</td>
<td>0.1871</td>
<td>0.1373</td>
<td>0.0920</td>
<td>0.2215</td>
</tr>
<tr>
<td>Cumulative Lost I/K Case 1</td>
<td>0.1206</td>
<td>0.0525</td>
<td>0.0833</td>
<td>0.0793</td>
<td>0.0842</td>
</tr>
<tr>
<td>Cumulative Lost I/K Case 2</td>
<td>0.0963</td>
<td>0.0399</td>
<td>0.0503</td>
<td>0.1117</td>
<td>0.1408</td>
</tr>
</tbody>
</table>

“Actual Average I/K: 1993-2002” shows the actual average investment rate (I/K) of the median non-zombie firm in the industry for 1993-2002. “Cumulative Lost I/K Case 1” shows the total amount of investment (I/K) of the typical non-zombie that was depressed during the period compared with the hypothetical case where the asset weighted zombie index had stayed at its average level for 1981-1992. “Cumulative Lost I/K Case 2” shows the total amount of investment (I/K) of the typical non-zombie that was depressed during the period compared with the hypothetical case where the asset weighted zombie index of the industry was the same as that of manufacturing in each year from 1993 to 2002. The coefficient estimates from the regression in the column 2 of Table 2 were used for the calculation.

B. Cumulative employment change (1993-2002) of the median non-zombie firm in the high zombies industries

<table>
<thead>
<tr>
<th>Industry</th>
<th>Wholesale</th>
<th>Retail</th>
<th>Construction</th>
<th>Real Estate</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Actual Employment growth: 1993-2002</td>
<td>-0.0136</td>
<td>0.0015</td>
<td>-0.0043</td>
<td>0.0062</td>
<td>0.0134</td>
</tr>
<tr>
<td>Cumulative lost employment -- Case 1</td>
<td>0.0381</td>
<td>0.0190</td>
<td>0.0285</td>
<td>0.0301</td>
<td>0.0381</td>
</tr>
<tr>
<td>Cumulative lost employment -- Case 2</td>
<td>0.0303</td>
<td>0.0144</td>
<td>0.0172</td>
<td>0.0427</td>
<td>0.0641</td>
</tr>
</tbody>
</table>

“Average Actual Employment Growth: 1993-2002” shows the actual average annual rate of change in the employment at the median non-zombie in the industry for 1993-2002. “Cumulative lost employment Case 1” shows the total rate of new hiring at the typical non-zombie that was depressed during this period compared with the hypothetical case where the asset weighted zombie index had stayed at its average level for 1981-1992. “Cumulative lost employment Case 2” shows the total rate of new hiring at the typical non-zombie that was depressed during the period compared with the hypothetical case where the asset weighted zombie index of the industry was the same as that of manufacturing in each year from 1993 to 2002. The coefficient estimates from the regression in the column 3 of Table 2 were used for the calculation.
Table A-1
Impact of Zombie Firms on the Investment, Employment and Productivity of Non-Zombies Using Fuzzy Zombie Indices

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>I/K</th>
<th>ΔLog E</th>
<th>Log Sales – ⅔ Log E</th>
<th>ΔLog E</th>
</tr>
</thead>
<tbody>
<tr>
<td>{d1, d2} (in basis points) in eq. (1)</td>
<td>{0, 50}</td>
<td>{-25, 75}</td>
<td>{0, 50}</td>
<td>{-25, 75}</td>
</tr>
<tr>
<td>Constant</td>
<td>0.2460 (0.0086)</td>
<td>0.2488 (0.0090)</td>
<td>0.0148 (0.0024)</td>
<td>0.0157 (0.0026)</td>
</tr>
<tr>
<td>Non-Zombie Dummy</td>
<td>0.0304 (0.0061)</td>
<td>0.0323 (0.0068)</td>
<td>0.0026 (0.0019)</td>
<td>0.0029 (0.0021)</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>-0.2016 (0.0335)</td>
<td>-0.2295 (0.0368)</td>
<td>-0.0555 (0.0100)</td>
<td>-0.0616 (0.0111)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.0572 (0.0264)</td>
<td>-0.0583 (0.0294)</td>
<td>-0.0161 (0.0080)</td>
<td>-0.0177 (0.0090)</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>-0.2016 (0.0335)</td>
<td>-0.2295 (0.0368)</td>
<td>-0.0555 (0.0100)</td>
<td>-0.0616 (0.0111)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.0572 (0.0264)</td>
<td>-0.0583 (0.0294)</td>
<td>-0.0161 (0.0080)</td>
<td>-0.0177 (0.0090)</td>
</tr>
<tr>
<td>Sales growth</td>
<td>0.1137 (0.0492)</td>
<td>0.1074 (0.0535)</td>
<td>0.1083 (0.0204)</td>
<td>0.1113 (0.0219)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>0.1516 (0.0616)</td>
<td>0.1564 (0.0684)</td>
<td>0.0108 (0.0252)</td>
<td>0.0029 (0.0277)</td>
</tr>
<tr>
<td>Sales Growth</td>
<td>0.7937 (0.2166)</td>
<td>0.7960 (0.2373)</td>
<td>0.1459 (0.0869)</td>
<td>0.1432 (0.0951)</td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td>0.7937 (0.2166)</td>
<td>0.7960 (0.2373)</td>
<td>0.1459 (0.0869)</td>
<td>0.1432 (0.0951)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.3982 (0.2639)</td>
<td>-0.3840 (0.2948)</td>
<td>-0.0880 (0.1207)</td>
<td>-0.0709 (0.1350)</td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td>-0.3982 (0.2639)</td>
<td>-0.3840 (0.2948)</td>
<td>-0.0880 (0.1207)</td>
<td>-0.0709 (0.1350)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0556</td>
<td>0.0559</td>
<td>0.0897</td>
<td>0.0898</td>
</tr>
</tbody>
</table>

The sample consists of between 1,844 and 2,506 publicly traded firms (depending on the year). Each regression is estimated after trimming the top and bottom 2.5% of observations (based on the dependent variable). White (1980) standard errors are reported in parentheses under each coefficient estimate. Industry and year dummies are also included in each regression. The zombie probabilities are calculated as described in the text using equation (1). Two digit industry classifications are used throughout. The industry percentages for zombies are based on the share of total industry assets residing in zombie firms. Sales growth is the log difference of each firm’s sales. I/K is the ratio of investment in depreciable assets to beginning of period stock of depreciable assets (measured at book value). E is the total number of full time employees. K is the book value of depreciable assets. Sample period is 1993 to 2002.
Table A-2
Impact of Zombie Firms on the Investment, Employment and Productivity of Non-Zombies
Excluding observations with the interest rate gap close to zero

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>I/K</th>
<th>ΔLog E</th>
<th>Log Sales – ⅔ Log E – ⅓ Log K</th>
<th>I/K</th>
<th>ΔLog E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of excluded</td>
<td>[0, 50]</td>
<td>[-25, 75]</td>
<td>[0, 50]</td>
<td>[-25, 75]</td>
<td>[0, 50]</td>
</tr>
<tr>
<td>obs (in basis points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.2331</td>
<td>0.2377</td>
<td>0.0129</td>
<td>0.0133</td>
<td>3.3776</td>
</tr>
<tr>
<td></td>
<td>(0.0088)</td>
<td>(0.0099)</td>
<td>(0.0026)</td>
<td>(0.0029)</td>
<td>(0.0210)</td>
</tr>
<tr>
<td>Non-Zombie Dummy</td>
<td>0.0293</td>
<td>0.0251</td>
<td>0.0019</td>
<td>0.0018</td>
<td>0.0613</td>
</tr>
<tr>
<td></td>
<td>(0.0059)</td>
<td>(0.0070)</td>
<td>(0.0018)</td>
<td>(0.0021)</td>
<td>(0.0143)</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>-0.0972</td>
<td>-0.1111</td>
<td>-0.0318</td>
<td>-0.0262</td>
<td>-0.2056</td>
</tr>
<tr>
<td></td>
<td>(0.0390)</td>
<td>(0.0469)</td>
<td>(0.0124)</td>
<td>(0.0145)</td>
<td>(0.0989)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.1274</td>
<td>-0.1087</td>
<td>-0.0374</td>
<td>-0.0383</td>
<td>-0.0615</td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td>(0.0356)</td>
<td>(0.0415)</td>
<td>(0.0110)</td>
<td>(0.0127)</td>
<td>(0.0828)</td>
</tr>
<tr>
<td>Sales growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1191</td>
<td>0.1712</td>
<td>0.1086</td>
<td>0.1421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0494)</td>
<td>(0.0580)</td>
<td>(0.0216)</td>
<td>(0.0211)</td>
<td></td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>0.1852</td>
<td>0.1329</td>
<td>0.0107</td>
<td>-0.0260</td>
<td></td>
</tr>
<tr>
<td>Sales Growth</td>
<td>(0.0621)</td>
<td>(0.0717)</td>
<td>(0.0249)</td>
<td>(0.0256)</td>
<td></td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td>1.1047</td>
<td>0.9219</td>
<td>0.1717</td>
<td>0.0519</td>
<td></td>
</tr>
<tr>
<td>* Sales Growth</td>
<td>(0.3073)</td>
<td>(0.3565)</td>
<td>(0.1189)</td>
<td>(0.1257)</td>
<td></td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.6630</td>
<td>-0.3733</td>
<td>-0.0225</td>
<td>0.1147</td>
<td></td>
</tr>
<tr>
<td>Sales Growth *</td>
<td>(0.3729)</td>
<td>(0.4317)</td>
<td>(0.1500)</td>
<td>(0.1636)</td>
<td></td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\overline{R}^2</td>
<td>0.0502</td>
<td>0.0457</td>
<td>0.0858</td>
<td>0.0792</td>
<td>0.3652</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1099</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The sample consists of between 1,844 and 2,506 publicly traded firms (depending on the year). Each regression is estimated after trimming the top and bottom 2.5% of observations (based on the dependent variable). White (1980) standard errors are reported in parentheses under each coefficient estimate. Industry and year dummies are also included in each regression. Any firm with actual interest payments below the hypothetical minimum is considered a zombie and any firm where this is not true is a non-zombie ($d_1=d_2=0$ in equation (1)). Two digit industry classifications are used throughout. The industry percentages for zombies are based on the share of total industry assets residing in zombie firms. Sales growth is the log difference of each firm’s sales. I/K is the ratio of investment in depreciable assets to beginning of period stock of depreciable assets (measured at book value). E is the total number of full time employees. K is the book value of depreciable assets. Sample period is 1993 to 2002.
Table A-3
Impact of Zombie Firms on the Investment, Employment and Productivity of Non-Zombies Using Estimated Maturity Structure for Long-term Borrowings and Bonds

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>I/K</th>
<th>ΔLog E</th>
<th>Log Sales</th>
<th>I/K</th>
<th>ΔLog E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.2496</td>
<td>0.0169</td>
<td>3.3919</td>
<td>0.2528</td>
<td>0.0180</td>
</tr>
<tr>
<td></td>
<td>(0.0090)</td>
<td>(0.0026)</td>
<td>(0.0210)</td>
<td>(0.0088)</td>
<td>(0.0026)</td>
</tr>
<tr>
<td>Non-Zombie Dummy</td>
<td>0.0125</td>
<td>-0.0007</td>
<td>0.0133</td>
<td>0.0144</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>(0.0062)</td>
<td>(0.0021)</td>
<td>(0.0147)</td>
<td>(0.0060)</td>
<td>(0.0019)</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>-0.0668</td>
<td>-0.0388</td>
<td>-0.3601</td>
<td>-0.0168</td>
<td>-0.0224</td>
</tr>
<tr>
<td></td>
<td>(0.0520)</td>
<td>(0.0163)</td>
<td>(0.1190)</td>
<td>(0.0493)</td>
<td>(0.0162)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.0867</td>
<td>-0.0321</td>
<td>0.2285</td>
<td>-0.0784</td>
<td>-0.0288</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>(0.0505)</td>
<td>(0.0155)</td>
<td>(0.1122)</td>
<td>(0.0473)</td>
<td>(0.0150)</td>
</tr>
<tr>
<td>Sales growth</td>
<td></td>
<td></td>
<td></td>
<td>0.1952</td>
<td>0.1316</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0561)</td>
<td>(0.0214)</td>
</tr>
<tr>
<td>Non-Zombie * Sales</td>
<td>0.0382</td>
<td></td>
<td></td>
<td>-0.0132</td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td>(0.0630)</td>
<td></td>
<td></td>
<td>(0.0248)</td>
<td></td>
</tr>
<tr>
<td>Industry Zombie% *</td>
<td>0.6669</td>
<td></td>
<td></td>
<td>-0.0068</td>
<td></td>
</tr>
<tr>
<td>Sales Growth</td>
<td>(0.4490)</td>
<td></td>
<td></td>
<td>(0.1458)</td>
<td></td>
</tr>
<tr>
<td>Non-Zombie * Sales</td>
<td>0.4628</td>
<td></td>
<td></td>
<td>0.2068</td>
<td></td>
</tr>
<tr>
<td>Growth * Industry</td>
<td>(0.4983)</td>
<td></td>
<td></td>
<td>(0.2086)</td>
<td></td>
</tr>
<tr>
<td>Zombie%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.0521</td>
<td>0.0897</td>
<td>0.3614</td>
<td>0.1075</td>
<td>0.1704</td>
</tr>
</tbody>
</table>

The sample consists of between 1,844 and 2,506 publicly traded firms (depending on the year). Each regression is estimated after trimming the top and bottom 2.5% of observations (based on the dependent variable). White (1980) standard errors are reported in parentheses under each coefficient estimate. Industry and year dummies are also included in each regression. Any firm with actual interest payments below the hypothetical minimum is considered a zombie and any firm where this is not true is a non-zombie (d1=d2=0 in equation (1)). Two digit industry classifications are used throughout. The industry percentages for zombies are based on the share of total industry assets residing in zombie firms. Sales growth is the log difference of each firm’s sales. I/K is the ratio of investment in depreciable assets to beginning of period stock of depreciable assets (measured at book value). E is the total number of full time employees. K is the book value of depreciable assets.
Table A-4
Impact of Zombie Firms on the Investment, Employment and Productivity of Non-Zombies
Assuming Zero for the Minimum Required Interest Rate on Bonds

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>I/K</th>
<th>ΔLog E</th>
<th>Log Sales – ⅔ Log E – ⅓ Log K</th>
<th>I/K</th>
<th>ΔLog E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.2382</td>
<td>0.0131</td>
<td>3.3834 (0.0195)</td>
<td>0.2464</td>
<td>0.0158</td>
</tr>
<tr>
<td></td>
<td>(0.0083)</td>
<td>(0.0024)</td>
<td></td>
<td>(0.0082)</td>
<td>(0.0023)</td>
</tr>
<tr>
<td>Non-Zombie Dummy</td>
<td>0.0237</td>
<td>0.0007</td>
<td>0.0129 (0.0133)</td>
<td>0.0223</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.0056)</td>
<td>(0.0017)</td>
<td></td>
<td>(0.0055)</td>
<td>(0.0017)</td>
</tr>
<tr>
<td>Industry Zombie %</td>
<td>-0.1879</td>
<td>-0.0533</td>
<td>-0.3915 (0.0941)</td>
<td>-0.1452</td>
<td>-0.0338</td>
</tr>
<tr>
<td></td>
<td>(0.0394)</td>
<td>(0.0123)</td>
<td></td>
<td>(0.0384)</td>
<td>(0.0120)</td>
</tr>
<tr>
<td>Non-Zombie *</td>
<td>-0.0793</td>
<td>-0.0213</td>
<td>0.2283 (0.0764)</td>
<td>-0.0575</td>
<td>-0.0145</td>
</tr>
<tr>
<td>Industry Zombie%</td>
<td>(0.0336)</td>
<td>(0.0104)</td>
<td></td>
<td>(0.0320)</td>
<td>(0.0101)</td>
</tr>
<tr>
<td>Sales growth</td>
<td></td>
<td></td>
<td></td>
<td>0.1240</td>
<td>0.1104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0495)</td>
<td>(0.0214)</td>
</tr>
<tr>
<td>Non-Zombie * Sales Growth</td>
<td></td>
<td></td>
<td></td>
<td>0.1394</td>
<td>0.0144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0593)</td>
<td>(0.0239)</td>
</tr>
<tr>
<td>Industry Zombie% * Sales Growth</td>
<td></td>
<td></td>
<td></td>
<td>1.0730</td>
<td>0.1561</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.3132)</td>
<td>(0.1191)</td>
</tr>
<tr>
<td>Non-Zombie * Sales Growth * Industry Zombie%</td>
<td></td>
<td></td>
<td></td>
<td>-0.5706</td>
<td>-0.0835</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.1154)</td>
<td>(0.1489)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0543</td>
<td>0.0896</td>
<td>0.3599 (0.1084)</td>
<td>0.1699</td>
<td></td>
</tr>
</tbody>
</table>

The sample consists of between 1,844 and 2,506 publicly traded firms (depending on the year). Each regression is estimated after trimming the top and bottom 2.5% of observations (based on the dependent variable). White (1980) standard errors are reported in parentheses under each coefficient estimate. Industry and year dummies are also included in each regression. Any firm with actual interest payments below the hypothetical minimum is considered a zombie and any firm where this is not true is a non-zombie (d1=d2=0 in equation (1)). Two digit industry classifications are used throughout. The industry percentages for zombies are based on the share of total industry assets residing in zombie firms. Sales growth is the log difference of each firm’s sales. I/K is the ratio of investment in depreciable assets to beginning of period stock of depreciable assets (measured at book value). E is the total number of full time employees. K is the book value of depreciable assets.