Screening Talent for Task Assignment: Absolute or Percentile Thresholds?

Ramji Balakrishnan
Tippie College of Business
University of Iowa
ramji-balakrishnan@uiowa.edu

Haijin Lin
C. T. Bauer College of Business
University of Houston
haijinlin@uh.edu

K. Sivaramakrishnan
Jones Graduate School of Business
Rice University
kshiva@rice.edu.

Online Appendix
Screening Talent for Task Assignment: Absolute or Percentile Thresholds?

Lemma A1 Suppose the principal must fill the tasks. Under APTS,

(i) the agent’s (equilibrium) manipulation level is non-increasing as the principal increases the threshold \(x_0 \) provided \(\frac{\partial F(x_0; t, c_t^A)}{\partial x} > 0 \) and \(\frac{\partial^2 F(x_0; t, c_t^A)}{\partial c_t \partial x} \geq 0 \);

(ii) the optimal threshold \(x_0^* \) equates the marginal effect on the talented agent’s likelihood of receiving a high signal with that for the untalented type; and

(iii) moreover, performance manipulation by the talented (untalented) agent increases (decreases) the principal’s expected payoff.

Proof of Lemma A1. Part (i). The optimal manipulation level is described by the following first-order condition:

\[
- \left[\frac{W_{t1} - W_{t2}}{2} \right] \left[\frac{\partial F(x_0; t, c_t^A)}{\partial c_t} \right] - c_t^A = 0. \tag{B-1}
\]

We can then derive \(\frac{dc_t^A}{dx_0} \) as

\[
\frac{dc_t^A}{dx_0} = - \frac{1}{2} \frac{W_{t1} - W_{t2}}{W_{t1} - W_{t2}} \frac{\partial^2 F(x_0; t, c_t^A)}{(\partial c_t)^2} + 1 \leq 0. \tag{B-2}
\]

The inequality in (B-2) is ensured by (a) \(W_{t1} > W_{t2} \); (b) Assumption 5; and (c) \(\frac{\partial^2 F(x_0; t, c_t^A)}{\partial c_t \partial x} \geq 0 \).

Part (ii). The principal chooses \(x_0 \) to minimize her expected loss. If both agents are either talented or untalented, her expected loss is \(\lambda^2 \Upsilon_T \) or \((1 - \lambda)^2 \Upsilon_U \). Therefore, the choice of \(x_0 \) has no effect on the expected loss. If the two agents have different types, the principal incurs a loss whenever the talented agent produces a low signal and the untalented agent produces a high signal. In this case, the principal’s expected loss is

\[
P_E L (x_0, c_t^A) = \lambda (1 - \lambda) \left[p_{UH} (c_t^A) + 1 - p_{TH} (c_t^A) \right] \left[\Upsilon_T + \Upsilon_U \right], \tag{B-3}
\]
where \(c^A_T \) and \(c^A_U \) are the principal’s conjectures of the agents’ manipulation levels which will be realized in equilibrium. Differentiating (B-3) and setting it to zero, the optimal threshold level \(x_0^{**} \) solves:

\[
\frac{-\partial F(x_0^{**}; U, c^A_T)}{\partial x_0} - \frac{\partial F(x_0^{**}; U, c^A_U)}{\partial c_t} \frac{dc^A_t}{dx_0} + \frac{\partial F(x_0^{**}; T, c^A_T)}{\partial x_0} + \frac{\partial F(x_0^{**}; T, c^A_U)}{\partial c_t} \frac{dc^A_T}{dx_0} = 0. \tag{B-4}
\]

With \(c^A_t > 0 \), the choice of threshold not only affects the likelihood of the agent producing a high signal, but also affects his incentive to manipulate. The first and the third terms of (B-4) are the (direct) effects of \(x_0 \) given the untalented and the talented agents’ manipulation levels; whereas the second and the fourth terms are the effects of \(x_0 \) on the agents’ manipulation that (indirectly) affects the agents’ likelihood of producing a high signal. The threshold \(x_0^{**} \) equates its marginal effect for the talented agent with that for the untalented agent. Given Assumption 5, the assumptions \(\frac{\partial F(x_0; c^A_T)}{\partial x_0} > 0 \) and \(\frac{dc^A_t}{dx_0} \leq 0 \) (as in (B-2)), the first two terms in (B-4) are negative and the last two terms are positive, guaranteeing the existence of an interior solution for \(x_0^{**} \).

Part (iii). To see how the choice of \(c^A_t \) affects the principal’s expected payoff, evaluating (B-3) at \(x_0^{**} \) and taking the derivative with respect to \(c^A_t \) yield

\[
\text{Sign} \left(\frac{\partial PEL(x_0^{**}, c^A_t)}{\partial c^A_T} \right) = \text{Sign} \left(-\frac{\partial PEL(x_0^{**}, c^A_t)}{\partial c^A_T} \right) = \text{Sign} \left(\frac{\partial F(x_0^{**}; T, c^A_T)}{\partial c_t} \right) < 0, \tag{B-5}
\]

and,

\[
\text{Sign} \left(\frac{\partial PEL(x_0^{**}, c^A_t)}{\partial c^A_U} \right) = \text{Sign} \left(\frac{\partial PEL(x_0^{**}, c^A_t)}{\partial c^A_U} \right) = \text{Sign} \left(-\frac{\partial F(x_0^{**}; U, c^A_U)}{\partial c_U} \right) > 0. \tag{B-6}
\]

The inequality (B-5) states that \(c^A_T \) decreases expected loss and thus increases the principal’s net payoff. The inequality (B-6) states that \(c^A_U \) increases expected loss and thus decreases
Proposition A1 Under APTS, the untalented agent engages in a higher level of performance manipulation than does the talented agent when (i) $\Gamma_1 \leq \Gamma_1^*$ and $\Gamma_2 > \Gamma_2^*$; or (ii) $\Gamma_1 > \Gamma_1^*$ and $\Gamma_2 \leq \Gamma_2^*$.

Proof of Proposition A1. Part (i). Consider the case in which $\Gamma_1 \leq \Gamma_1^*$ and $\Gamma_2 > \Gamma_2^*$ so that the principal prefers flexible (full) staffing when she observes $\{L, L\}$ ($\{H, H\}$). For a given x_0, the type t agent conjectures about his peer’s manipulation levels, \hat{c}_T^A and \hat{c}_U^A, and chooses c_t^A to maximize his net expected payoff:

$$
\max_{c_t} U_t^A = p_{TH} \left(c_t^A \right) \left[\lambda p_{TH} \left(\hat{c}_T^A \right) + (1 - \lambda) p_{UH} \left(\hat{c}_U^A \right) \right] \frac{W_{t1} + W_{t2}}{2} \\
+ \left[1 - p_{TH} \left(c_t^A \right) \right] \left\{ \lambda \left[1 - p_{TH} \left(\hat{c}_T^A \right) \right] + (1 - \lambda) \left[1 - p_{UH} \left(\hat{c}_U^A \right) \right] \right\} W_{t2} \\
+ p_{TH} \left(c_t^A \right) \left\{ \lambda \left[1 - p_{TH} \left(\hat{c}_T^A \right) \right] + (1 - \lambda) \left[1 - p_{UH} \left(\hat{c}_U^A \right) \right] \right\} W_{t1} \\
+ \left[1 - p_{TH} \left(c_t^A \right) \right] \left\{ \lambda p_{TH} \left(\hat{c}_T^A \right) + (1 - \lambda) p_{UH} \left(\hat{c}_U^A \right) \right\} W_{t1} - \frac{(c_t^A)^2}{2}
$$

\(\Rightarrow\)

$$
\max_{c_t} U_t^A = p_{TH} \left(c_t^A \right) \left[\lambda p_{TH} \left(\hat{c}_T^A \right) + (1 - \lambda) p_{UH} \left(\hat{c}_U^A \right) \right] \frac{W_{t1} + W_{t2}}{2} \\
+ \left[1 - p_{TH} \left(c_t^A \right) \right] W_{t2} \\
+ p_{TH} \left(c_t^A \right) \left\{ \lambda \left[1 - p_{TH} \left(\hat{c}_T^A \right) \right] + (1 - \lambda) \left[1 - p_{UH} \left(\hat{c}_U^A \right) \right] \right\} W_{t1} \\
- \frac{(c_t^A)^2}{2}.
$$

(D-7)

Differentiating (D-7) with respect to c_t and setting it to zero while taking \hat{c}_T^A and \hat{c}_U^A as given yields

$$
\frac{\partial U_t^A}{\partial c_t} = \frac{\partial p_{TH} \left(c_t^A \right)}{\partial c_t} \left\{ \frac{1}{2} \left[\lambda p_{TH} \left(\hat{c}_T^A \right) + (1 - \lambda) p_{UH} \left(\hat{c}_U^A \right) \right] \right\} W_{t1} \\
+ \frac{\partial p_{TH} \left(c_t^A \right)}{\partial c_t} \left\{ \frac{\lambda p_{TH} \left(\hat{c}_T^A \right) + (1 - \lambda) p_{UH} \left(\hat{c}_U^A \right)}{2} - 1 \right\} W_{t2} - c_t^A = 0
$$
\[\Leftrightarrow \left\{ \frac{1 + \lambda [1 - p_{TH} (\hat{c}_T^A)] + (1 - \lambda) [1 - p_{UU} (\hat{c}_U^A)]}{2} \right\} [W_{t1} - W_{t2}] \frac{\partial p_{TH} (c_t^A)}{\partial c_t} - c_t^A = 0. \]

(B-8)

By definition \(p_{TH} (c_t^A) = p_{TH} (c_t^A; x_0) = 1 - F (x_0; t, c_t^A) \), (B-8) can be written as

\[-\Phi [W_{t1} - W_{t2}] \left[\frac{\partial F (x_0; t, c_t^A)}{\partial c_t} \right] - c_t^A = 0; \text{ where} \]

\[\Phi = \frac{1 + \lambda [1 - p_{TH} (\hat{c}_T^A)] + (1 - \lambda) [1 - p_{UU} (\hat{c}_U^A)]}{2} > 0. \]

Assumption 4 \((\frac{\partial^2 F(x_0; t, c_t^A)}{\partial t^2} > 0) \) ensures that the objective function \(U_t^A \) is concave and therefore the optimal level of \(c_t \) is determined by (B-9).

To compare \(c_T^A \) and \(c_U^A \), we write

\[0 = -\Phi [W_{t1} - W_{t2}] \left[\frac{\partial F (x_0; T, c_T^A)}{\partial c_t} \right] - c_T^A \]

\[\leq -\Phi [W_{U1} - W_{U2}] \left[\frac{\partial F (x_0; U, c_T^A)}{\partial c_t} \right] - c_T^A. \]

(B-10)

The inequality in (B-10) is supported by Assumptions 3, 4 and 5. Replacing the left-hand-side of the inequality with the expression (B-9) setting \(t = U \) yields

\[-\Phi [W_{U1} - W_{U2}] \left[\frac{\partial F (x_0; U, c_U^A)}{\partial c_t} \right] - c_U^A = 0 \]

\[\leq -\Phi [W_{U1} - W_{U2}] \left[\frac{\partial F (x_0; U, c_T^A)}{\partial c_t} \right] - c_T^A \]

\[\Rightarrow \ c_T^A < c_U^A. \]

(B-11)

The second inequality in (B-11) is implied as the agent’s objective function is concave in \(c_t \).

Part (ii). Consider the case in which \(\Gamma_1 > \Gamma_1^* \) and \(\Gamma_2 < \Gamma_2^* \) so that the principal prefers
full (flexible) staffing when she observes \(\{L, L\} (\{H, H\}) \). For a given \(x_0 \), the type \(t \) agent conjectures about his peer’s manipulation actions, \(^c_A T \) and \(^c_A U \), and chooses his own action \(c^A_t \) to maximize the net expected payoff:

\[
\begin{align*}
\text{Max} U^A_t &= p_{tH} \left(c^A_t \right) \left[\lambda p_{TH} \left(^c_A T \right) + (1 - \lambda) p_{UH} \left(^c_A U \right) \right] W_{1t} \\
&+ \left[1 - p_{tH} \left(c^A_t \right) \right] \left\{ \lambda \left[1 - p_{TH} \left(^c_A T \right) \right] + (1 - \lambda) \left[1 - p_{UH} \left(^c_A U \right) \right] \right\} \frac{W_{1t} + W_{2t}}{2} \\
+ p_{tH} \left(c^A_t \right) \left\{ \lambda \left[1 - p_{TH} \left(^c_A T \right) \right] + (1 - \lambda) \left[1 - p_{UH} \left(^c_A U \right) \right] \right\} W_{1t} \\
&+ \left[1 - p_{tH} \left(c^A_t \right) \right] \left[\lambda p_{TH} \left(^c_A T \right) + (1 - \lambda) p_{UH} \left(^c_A U \right) \right] W_{2t} - \frac{(c^A_t)^2}{2}.
\end{align*}
\]

\[(B-12) \]

Differentiating (B-12) with respect to \(c_t \) and setting it to zero while taking \(^c_A T \) and \(^c_A U \) as given yields

\[
\frac{\partial U^A_t}{\partial c_t} = \frac{\partial p_{tH} \left(c^A_t \right)}{\partial c_t} W_{1t} - \frac{\partial p_{tH} \left(c^A_t \right)}{\partial c_t} \left[1 + \lambda p_{TH} \left(^c_A T \right) + (1 - \lambda) p_{UH} \left(^c_A U \right) \right] W_{1t} + \frac{W_{1t} + W_{2t}}{2} \\
- \frac{\partial p_{tH} \left(c^A_t \right)}{\partial c_t} \left\{ \lambda \left[1 - p_{TH} \left(^c_A T \right) \right] + (1 - \lambda) \left[1 - p_{UH} \left(^c_A U \right) \right] \right\} \frac{W_{1t} + W_{2t}}{2} \\
- c^A_t = 0
\]

\[(B-13) \]
By definition $p_{tH} (c_t^A) = p_{tH} (c_t^A; x_0) = 1 - F (x_0; t, c_t^A)$, (B-13) can be written as

$$\Psi [W_{t1} - W_{t2}] \left[\frac{\partial F (x_0; t, c_t^A)}{\partial c_t} \right] - c_t^A = 0; \text{ where}$$

$\Psi = 1 - \frac{1}{2} \{ \lambda [1 - p_{RH} (\hat{c}_t^A)] + (1 - \lambda) [1 - p_{UH} (\hat{c}_U^A)] \} > 0.$

Assumption 4 ($\frac{\partial^2 F (x_0; t, c_t^A)}{\partial c_t^2} > 0$) ensures that the objective function U_t^A is concave and therefore the optimal level of c_t is determined by (B-14).

To compare c_t^A and c_U^A, we apply the parallel analysis as the proof of Part (i).